summaryrefslogtreecommitdiff
path: root/src/arch/mips
AgeCommit message (Collapse)Author
2011-01-07Replace curTick global variable with accessor functions.Steve Reinhardt
This step makes it easy to replace the accessor functions (which still access a global variable) with ones that access per-thread curTick values.
2011-01-03Make commenting on close namespace brackets consistent.Steve Reinhardt
Ran all the source files through 'perl -pi' with this script: s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|; s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|; s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|; Also did a little manual editing on some of the arch/*/isa_traits.hh files and src/SConscript.
2010-12-20Style: Replace some tabs with spaces.Gabe Black
2010-12-08MIPS: Take advantage of new PCState syntax.Gabe Black
2010-12-07O3: Make all instructions that write a misc. register not perform the write ↵Giacomo Gabrielli
until commit. ARM instructions updating cumulative flags (ARM FP exceptions and saturation flags) are not serialized. Added aliases for ARM FP exceptions and saturation flags in FPSCR. Removed write accesses to the FP condition codes for most ARM VFP instructions: only VCMP and VCMPE instructions update the FP condition codes. Removed a potential cause of seg. faults in the O3 model for NEON memory macro-ops (ARM).
2010-11-15O3: Make O3 support variably lengthed instructions.Gabe Black
2010-11-08ARM/Alpha/Cpu: Change prefetchs to be more like normal loads.Ali Saidi
This change modifies the way prefetches work. They are now like normal loads that don't writeback a register. Previously prefetches were supposed to call prefetch() on the exection context, so they executed with execute() methods instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs are blank, meaning that they get executed, but don't actually do anything. On Alpha dead cache copy code was removed and prefetches are now normal ops. They count as executed operations, but still don't do anything and IsMemRef is not longer set on them. On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch instructions. The timing simple CPU doesn't try to do anything special for prefetches now and they execute with the normal memory code path.
2010-11-08sim: Use forward declarations for ports.Ali Saidi
Virtual ports need TLB data which means anything touching a file in the arch directory rebuilds any file that includes system.hh which in everything.
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-10-22ISA: Simplify various implementations of completeAcc.Gabe Black
2010-10-16Mem: Reclaim some request flags used by MIPS for alignment checking.Gabe Black
These flags were being used to identify what alignment a request needed, but the same information is available using the request size. This change also eliminates the isMisaligned function. If more complicated alignment checks are needed, they can be signaled using the ASI_BITS space in the flags vector like is currently done with ARM.
2010-10-15GetArgument: Rework getArgument so that X86_FS compiles again.Gabe Black
When no size is specified for an argument, push the decision about what size to use into the ISA by passing a size of -1.
2010-10-01Debug: Implement getArgument() and function skipping for ARM.Ali Saidi
In the process make add skipFuction() to handle isa specific function skipping instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can only start in even registers. Size is now passed to getArgument() so that 32 bit systems can make decisions about register selection for 64 bit arguments. The number argument is now passed by reference because getArgument() will need to change it based on the size of the argument and the current argument number. For ARM, if the argument number is odd and a 64-bit register is requested the number must first be incremented to because all 64 bit arguments are passed in an even argument register. Then the number will be incremented again to access both halves of the argument.
2010-09-13Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.Gabe Black
Also move the "Fault" reference counted pointer type into a separate file, sim/fault.hh. It would be better to name this less similarly to sim/faults.hh to reduce confusion, but fault.hh matches the name of the type. We could change Fault to FaultPtr to match other pointer types, and then changing the name of the file would make more sense.
2010-09-10style: fix sorting of includes and whitespace in some filesNathan Binkert
2010-08-25ARM: Fixed register flattening logic (FP_Base_DepTag was set too low)Min Kyu Jeong
When decoding a srs instruction, invalid mode encoding returns invalid instruction. This can happen when garbage instructions are fetched from mispredicted path
2010-08-23ISA: Get rid of old, unused utility functions cluttering up the ISAs.Gabe Black
2010-08-23Loader: Make the load address mask be a parameter of the system rather than ↵Ali Saidi
a constant. This allows one two different OS requirements for the same ISA to be handled. Some OSes are compiled for a virtual address and need to be loaded into physical memory that starts at address 0, while other bare metal tools generate images that start at address 0.
2010-08-17sim: revamp unserialization procedureSteve Reinhardt
Replace direct call to unserialize() on each SimObject with a pair of calls for better control over initialization in both ckpt and non-ckpt cases. If restoring from a checkpoint, loadState(ckpt) is called on each SimObject. The default implementation simply calls unserialize() if there is a corresponding checkpoint section, so we get backward compatibility for existing objects. However, objects can override loadState() to get other behaviors, e.g., doing other programmed initializations after unserialize(), or complaining if no checkpoint section is found. (Note that the default warning for a missing checkpoint section is now gone.) If not restoring from a checkpoint, we call the new initState() method on each SimObject instead. This provides a hook for state initializations that are only required when *not* restoring from a checkpoint. Given this new framework, do some cleanup of LiveProcess subclasses and X86System, which were (in some cases) emulating initState() behavior in startup via a local flag or (in other cases) erroneously doing initializations in startup() that clobbered state loaded earlier by unserialize().
2010-06-15stats: only consider a formula initialized if there is a formulaNathan Binkert
2010-06-03More minor gdb-related cleanup.Steve Reinhardt
Found several more stale includes and forward decls.
2010-04-15tick: rename Clock namespace to SimClockNathan Binkert
2010-03-23cpu: fix exec tracing memory corruption bugSteve Reinhardt
Accessing traceData (to call setAddress() and/or setData()) after initiating a timing translation was causing crashes, since a failed translation could delete the traceData object before returning. It turns out that there was never a need to access traceData after initiating the translation, as the traced data was always available earlier; this ordering was merely historical. Furthermore, traceData->setAddress() and traceData->setData() were being called both from the CPU model and the ISA definition, often redundantly. This patch standardizes all setAddress and setData calls for memory instructions to be in the CPU models and not in the ISA definition. It also moves those calls above the translation calls to eliminate the crashes.
2010-02-12O3PCU: Split loads and stores that cross cache line boundaries.Timothy M. Jones
When each load or store is sent to the LSQ, we check whether it will cross a cache line boundary and, if so, split it in two. This creates two TLB translations and two memory requests. Care has to be taken if the first packet of a split load is sent but the second blocks the cache. Similarly, for a store, if the first packet cannot be sent, we must store the second one somewhere to retry later. This modifies the LSQSenderState class to record both packets in a split load or store. Finally, a new const variable, HasUnalignedMemAcc, is added to each ISA to indicate whether unaligned memory accesses are allowed. This is used throughout the changed code so that compiler can optimise away code dealing with split requests for ISAs that don't need them.
2009-12-31MIPS: Beef up process initialization.Matt DeVuyst
2009-12-31MIPS: Implement the SE mode version of rdhwr.Gabe Black
2009-12-31MIPS: Fix decoding of the rdhwr instruction.Gabe Black
2009-12-31MIPS: Implement the set_thread_area system call.Gabe Black
2009-12-31MIPS: Create an artificial control register to hold the thread pointer.Gabe Black
In Linux, the set_thread_area system call stores the address of the thread local storage area into a field of the current thread_info structure. Later, to access that value, the program uses the rdhwr instruction to read a "hardware register" with index 29. The 64 bit MIPS manual, volume II, says that index 29 is reserved for a future ABI extension and should cause a "Reserved Instruction Exception". In Linux (and potentially other ISAs) that exception is trapped and emulated to return the value stored by set_thread_area as if that were actually stored by a physical register. The tp_value address (as named in the Linux kernel) is ironically stored as a control register so that it goes with a particular ThreadContext. Syscall emulation will use that to emulate storing to the OS's thread info structure, and rdhwr will emulate faulting and returning that value from software by returning the value itself, as if it was in hardware. In other words, we fake faking the register in SE mode. In an FS mode implementation it should work as specified in the manual.
2009-12-31MIPS: Extract CPU pointer from the thread context in scheduleCP0 setMiscReg.Gabe Black
The MIPS ISA object expects to be constructed with a CPU pointer it uses to look at other thread contexts and allow them to be manipulated with control registers. Unfortunately, that differs from all the other ISA classes and would complicate their implementation. This change makes the event constructor use a CPU pointer pulled out of the thread context passed to setMiscReg instead.
2009-12-21MIPS: Add missing syscall slots.Gabe Black
These are all after the existing ones, suggesting they were added after the original list was created.
2009-11-10Mem: Eliminate the NO_FAULT request flag.Gabe Black
2009-11-04build: fix compile problems pointed out by gcc 4.4Nathan Binkert
2009-10-30Syscalls: Make system calls access arguments like a stack, not an array.Gabe Black
When accessing arguments for a syscall, the position of an argument depends on the policies of the ISA, how much space preceding arguments took up, and the "alignment" of the index for this particular argument into the number of possible storate locations. This change adjusts getSyscallArg to take its index parameter by reference instead of value and to adjust it to point to the possible location of the next argument on the stack, basically just after the current one. This way, the rules for the new argument can be applied locally without knowing about other arguments since those have already been taken into account implicitly. All system calls have also been changed to reflect the new interface. In a number of cases this made the implementation clearer since it encourages arguments to be collected in one place in order and then used as necessary later, as opposed to scattering them throughout the function or using them in place in long expressions. It also discourages using getSyscallArg over and over to retrieve the same value when a temporary would do the job.
2009-10-24syscall: Addition of an ioctl command code for Power.Timothy M. Jones
2009-10-17ISA: Fix compilation.Gabe Black
2009-09-22python: Move more code into m5.util allow SCons to use that code.Nathan Binkert
Get rid of misc.py and just stick misc things in __init__.py Move utility functions out of SCons files and into m5.util Move utility type stuff from m5/__init__.py to m5/util/__init__.py Remove buildEnv from m5 and allow access only from m5.defines Rename AddToPath to addToPath while we're moving it to m5.util Rename read_command to readCommand while we're moving it Rename compare_versions to compareVersions while we're moving it. --HG-- rename : src/python/m5/convert.py => src/python/m5/util/convert.py rename : src/python/m5/smartdict.py => src/python/m5/util/smartdict.py
2009-09-17mips: fix command line argumentsKorey Sewell
arguments were not being saved correctly into M5 memory
2009-09-15Syscalls: Implement sysinfo() syscall.Vince Weaver
2009-07-31merge mips fix and statetrace changesKorey Sewell
2009-07-31mips: fix ll/sc pairs working incorrectly because of accidental clobber of ↵Korey Sewell
LLFLAG
2009-07-30compile: fix accidental conversion of == into =Nathan Binkert
2009-07-22MIPS: Small fix I forgot to qrefresh into my last change.Gabe Black
2009-07-22MIPS: Style/formatting sweep of the decoder itself.Gabe Black
2009-07-21MIPS: Format the register index constants like the other ISAs.Gabe Black
Also a few more style fixes.
2009-07-21MIPS: Get MIPS_FS to compile, more style fixes.Gabe Black
Some breakage was from my BitUnion change, some was much older.
2009-07-21MIPS: Many style fixes.Gabe Black
White space, commented out code, some other minor fixes.
2009-07-20MIPS: Use BitUnions instead of bits() functions and constants.Gabe Black
Also fix style issues in regions around these changes.
2009-07-10ISAs: Get rid of the IControl operand type.Gabe Black
A separate operand type is not necessary to use two bitfields to generate the index.
2009-07-09MIPS: Fold the MiscRegFile all the way into the ISA object.Gabe Black