Age | Commit message (Collapse) | Author |
|
With the hierarchical RegId there are a lot of functions that are
redundant now.
The idea behind the simplification is that instead of having the regId,
telling which kind of register read/write/rename/lookup/etc. and then
the function panic_if'ing if the regId is not of the appropriate type,
we provide an interface that decides what kind of register to read
depending on the register type of the given regId.
Change-Id: I7d52e9e21fc01205ae365d86921a4ceb67a57178
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2702
|
|
Replace the unified register mapping with a structure associating
a class and an index. It is now much easier to know which class of
register the index is referring to. Also, when adding a new class
there is no need to modify existing ones.
Change-Id: I55b3ac80763702aa2cd3ed2cbff0a75ef7620373
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2700
|
|
|
|
|
|
This adds a vector register type. The type is defined as a std::array of a
fixed number of uint64_ts. The isa_parser.py has been modified to parse vector
register operands and generate the required code. Different cpus have vector
register files now.
|
|
Add a third register class for condition codes,
in parallel with the integer and FP classes.
No ISAs use the CC class at this point though.
|
|
Move from a poorly documented scheme where the mapping
of unified architectural register indices to register
classes is hardcoded all over to one where there's an
enum for the register classes and a function that
encapsulates the mapping.
|
|
This adds support for the 32-bit, big endian Power ISA. This supports both
integer and floating point instructions based on the Power ISA Book I v2.06.
|