Age | Commit message (Collapse) | Author |
|
This patch adds support for debugging with remote GDB to RISC-V. Using
GDB compiled with the RISC-V GNU toolchain, it is possible to pause
and continue execution, view debugging information, etc. As with the
rest of RISC-V, this does not support full-system mode.
Change-Id: I2d3a8be614725e1be4b4c283f9fb678a0a30578d
Reviewed-on: https://gem5-review.googlesource.com/2304
Maintainer: Alec Roelke <ar4jc@virginia.edu>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
The changeset does a major refactor on the exit, exit_group, and
futex system calls regarding exit functionality.
A FutexMap class and related structures are added into a new
file. This increases code clarity by encapsulating the futex
operations and the futex state into an object.
Several exit conditions were added to allow the simulator to end
processes under certain conditions. Also, the simulation only
exits now when all processes have finished executing.
Change-Id: I1ee244caa9b5586fe7375e5b9b50fd3959b9655e
Reviewed-on: https://gem5-review.googlesource.com/2269
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Fourth of five patches adding RISC-V to GEM5. This patch adds the RV64A
extension, which includes atomic memory instructions. These instructions
atomically read a value from memory, modify it with a value contained in a
source register, and store the original memory value in the destination
register and modified value back into memory. Because this requires two
memory accesses and GEM5 does not support two timing memory accesses in
a single instruction, each of these instructions is split into two micro-
ops: A "load" micro-op, which reads the memory, and a "store" micro-op,
which modifies and writes it back. Each atomic memory instruction also has
two bits that acquire and release a lock on its memory location.
Additionally, there are atomic load and store instructions that only either
load or store, but not both, and can acquire or release memory locks.
Note that because the current implementation of RISC-V only supports one
core and one thread, it doesn't make sense to make use of AMO instructions.
However, they do form a standard extension of the RISC-V ISA, so they are
included mostly as a placeholder for when multithreaded execution is
implemented. As a result, any tests for their correctness in a future
patch may be abbreviated.
Patch 1 introduced RISC-V and implemented the base instruction set, RV64I;
patch 2 implemented the integer multiply extension, RV64M; and patch 3
implemented the single- and double-precision floating point extensions,
RV64FD.
Patch 5 will add support for timing, minor, and detailed CPU models that
isn't present in patches 1-4.
[Added missing file amo.isa]
[Replaced information removed from initial patch that was missed during
division into multiple patches.]
[Fixed some minor formatting issues.]
[Fixed oversight where LR and SC didn't have both AQ and RL flags.]
Signed-off by: Alec Roelke
Signed-off by: Jason Lowe-Power <jason@lowepower.com>
|
|
Third of five patches adding RISC-V to GEM5. This patch adds the RV64FD
extensions, which include single- and double-precision floating point
instructions.
Patch 1 introduced RISC-V and implemented the base instruction set, RV64I
and patch 2 implemented the integer multiply extension, RV64M.
Patch 4 will implement the atomic memory instructions, RV64A, and patch
5 will add support for timing, minor, and detailed CPU models that is
missing from the first four patches.
[Fixed exception handling in floating-point instructions to conform better
to IEEE-754 2008 standard and behavior of the Chisel-generated RISC-V
simulator.]
[Fixed style errors in decoder.isa.]
[Fixed some fuzz caused by modifying a previous patch.]
Signed-off by: Alec Roelke
Signed-off by: Jason Lowe-Power <jason@lowepower.com>
|
|
First of five patches adding RISC-V to GEM5. This patch introduces the
base 64-bit ISA (RV64I) in src/arch/riscv for use with syscall emulation.
The multiply, floating point, and atomic memory instructions will be added
in additional patches, as well as support for more detailed CPU models.
The loader is also modified to be able to parse RISC-V ELF files, and a
"Hello world\!" example for RISC-V is added to test-progs.
Patch 2 will implement the multiply extension, RV64M; patch 3 will implement
the floating point (single- and double-precision) extensions, RV64FD;
patch 4 will implement the atomic memory instructions, RV64A, and patch 5
will add support for timing, minor, and detailed CPU models that is missing
from the first four patches (such as handling locked memory).
[Removed several unused parameters and imports from RiscvInterrupts.py,
RiscvISA.py, and RiscvSystem.py.]
[Fixed copyright information in RISC-V files copied from elsewhere that had
ARM licenses attached.]
[Reorganized instruction definitions in decoder.isa so that they are sorted
by opcode in preparation for the addition of ISA extensions M, A, F, D.]
[Fixed formatting of several files, removed some variables and
instructions that were missed when moving them to other patches, fixed
RISC-V Foundation copyright attribution, and fixed history of files
copied from other architectures using hg copy.]
[Fixed indentation of switch cases in isa.cc.]
[Reorganized syscall descriptions in linux/process.cc to remove large
number of repeated unimplemented system calls and added implmementations
to functions that have received them since it process.cc was first
created.]
[Fixed spacing for some copyright attributions.]
[Replaced the rest of the file copies using hg copy.]
[Fixed style check errors and corrected unaligned memory accesses.]
[Fix some minor formatting mistakes.]
Signed-off by: Alec Roelke
Signed-off by: Jason Lowe-Power <jason@lowepower.com>
|