Age | Commit message (Collapse) | Author |
|
With the hierarchical RegId there are a lot of functions that are
redundant now.
The idea behind the simplification is that instead of having the regId,
telling which kind of register read/write/rename/lookup/etc. and then
the function panic_if'ing if the regId is not of the appropriate type,
we provide an interface that decides what kind of register to read
depending on the register type of the given regId.
Change-Id: I7d52e9e21fc01205ae365d86921a4ceb67a57178
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2702
|
|
Replace the unified register mapping with a structure associating
a class and an index. It is now much easier to know which class of
register the index is referring to. Also, when adding a new class
there is no need to modify existing ones.
Change-Id: I55b3ac80763702aa2cd3ed2cbff0a75ef7620373
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2700
|
|
The previous implementation did a pair of nested RMW operations,
which isn't compatible with the way that locked RMW operations are
implemented in the cache models. It was convenient though in that
it didn't require any new micro-ops, and supported cmpxchg16b using
64-bit memory ops. It also worked in AtomicSimpleCPU where
atomicity was guaranteed by the core and not by the memory system.
It did not work with timing CPU models though.
This new implementation defines new 'split' load and store micro-ops
which allow a single memory operation to use a pair of registers as
the source or destination, then uses a single ldsplit/stsplit RMW
pair to implement cmpxchg. This patch requires support for 128-bit
memory accesses in the ISA (added via a separate patch) to support
cmpxchg16b.
|
|
This patch makes the memory system ISA-agnostic by enabling the Ruby
Sequencer to dynamically determine if it has to do a store check. To
enable this check, the ISA is encoded as an enum, and the system
is able to provide the ISA to the Sequencer at run time.
--HG--
rename : src/arch/x86/insts/microldstop.hh => src/arch/x86/ldstflags.hh
|
|
The parameter is _machInst, which is very similar to the member machInst. If
machInst is used to pass the parameter to a lower level constructor, what
really happens is that machInst is set to whatever it already happened to be,
effectively leaving it uninitialized.
|
|
|
|
Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
|
|
This single parameter replaces the collection of bools that set up various
flavors of microops. A flag parameter also allows other flags to be set like
the serialize before/after flags, etc., without having to change the
constructor.
|
|
|
|
static should not be used for constants that are not inside a class definition.
|
|
operands.
|
|
flags.
|
|
|
|
|
|
|
|
--HG--
extra : convert_revision : 42f68010e6498aceb7ed25da278093e99150e4df
|
|
There is a fundemental flaw in how unaligned accesses are supported, but this
is still an improvement.
--HG--
extra : convert_revision : 1c20b524ac24cd4a812c876b067495ee6a7ae29f
|
|
whether or not register indexes should be "folded".
--HG--
extra : convert_revision : 4b46e71ca91e480f6e1662b7f37b75240d6598e9
|
|
These functions take care of calling the thread contexts read and write functions with the right sized data type, and handle unaligned accesses.
--HG--
extra : convert_revision : b4b59ab2b22559333035185946bae3eab316c879
|
|
--HG--
rename : src/arch/x86/isa/base.isa => src/arch/x86/isa/outputblock.isa
extra : convert_revision : 7954e7d5eea3b5966c9e273a08bcd169a39f380c
|