Age | Commit message (Collapse) | Author |
|
In order to support hardware virtualization, we need to be able to
check if there are any interrupts pending irregardless of the
rflags.intf value. This changeset adds the checkInterruptsRaw() method
to the x86 interrupt control. It returns true if there are pending
interrupts that can be delivered as soon as the CPU is ready for
interrupt delivery.
|
|
Instead of relying on derived classes explicitly assigning
to the BasicPioDevice pioSize field, require them to pass
a size value in to the constructor.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
PciDev and IntDev stuck out as the only device classes that
ended in 'Dev' rather than 'Device'. This patch takes care
of that inconsistency.
Note that you may need to delete pre-existing files matching
build/*/python/m5/internal/param_* as scons does not pick up
indirect dependencies on imported python modules when generating
params, and the PciDev -> PciDevice rename takes place in a
file (dev/Device.py) that gets imported quite a bit.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
A couple of devices that have single fixed memory mapped regions
were not derived from BasicPioDevice, when that's exactly
the functionality that BasicPioDevice provides. This patch
gets rid of a little bit of redundant code by making those
devices actually do so.
Also fixed the weird case of X86ISA::Interrupts, where
the class already did derive from BasicPioDevice but
didn't actually use all the features it could have.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
It is possible that operating system wants to shutdown the
lapic timer by writing timer's initial count to 0. This patch
adds a check that the timer event is only scheduled if the
count is 0.
The patch also converts few of the panics related to the keyboard
to warnings since we are any way not interested in simulating the
keyboard.
|
|
This patch fixes the warnings that clang3.2svn emit due to the "-Wall"
flag. There is one case of an uninitialised value in the ARM neon ISA
description, and then a whole range of unused private fields that are
pruned.
|
|
This patch moves the 16x APIC clock divider to the Python code to
avoid the post-instantiation modifications to the clock. The x86 APIC
was the only object setting the clock after creation time and this
required some custom functionality and configuration. With this patch,
the clock multiplier is moved to the Python code and the objects are
instantiated with the appropriate clock.
|
|
Virtualized CPUs and the fastmem mode of the atomic CPU require direct
access to physical memory. We currently require caches to be disabled
when using them to prevent chaos. This is not ideal when switching
between hardware virutalized CPUs and other CPU models as it would
require a configuration change on each switch. This changeset
introduces a new version of the atomic memory mode,
'atomic_noncaching', where memory accesses are inserted into the
memory system as atomic accesses, but bypass caches.
To make memory mode tests cleaner, the following methods are added to
the System class:
* isAtomicMode() -- True if the memory mode is 'atomic' or 'direct'.
* isTimingMode() -- True if the memory mode is 'timing'.
* bypassCaches() -- True if caches should be bypassed.
The old getMemoryMode() and setMemoryMode() methods should never be
used from the C++ world anymore.
|
|
This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.
In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.
--HG--
rename : src/base/range.hh => src/base/addr_range.hh
rename : src/base/range_map.hh => src/base/addr_range_map.hh
|
|
This patch moves the clock of the CPU, bus, and numerous devices to
the new class ClockedObject, that sits in between the SimObject and
MemObject in the class hierarchy. Although there are currently a fair
amount of MemObjects that do not make use of the clock, they
potentially should do so, e.g. the caches should at some point have
the same clock as the CPU, potentially with a 1:n ratio. This patch
does not introduce any new clock objects or object hierarchies
(clusters, clock domains etc), but is still a step in the direction of
having a more structured approach clock domains.
The most contentious part of this patch is the serialisation of clocks
that some of the modules (but not all) did previously. This
serialisation should not be needed as the clock is set through the
parameters even when restoring from the checkpoint. In other words,
the state is "stored" in the Python code that creates the modules.
The nextCycle methods are also simplified and the clock phase
parameter of the CPU is removed (this could be part of a clock object
once they are introduced).
|
|
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
|
|
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
|
|
This patch moves all port creation from the getPort method to be
consistently done in the MemObject's constructor. This is possible
thanks to the Swig interface passing the length of the vector ports.
Previously there was a mix of: 1) creating the ports as members (at
object construction time) and using getPort for the name resolution,
or 2) dynamically creating the ports in the getPort call. This is now
uniform. Furthermore, objects that would not be complete without a
port have these ports as members rather than having pointers to
dynamically allocated ports.
This patch also enables an elaboration-time enumeration of all the
ports in the system which can be used to determine the masterId.
|
|
--HG--
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
|
|
|
|
|
|
This is so they don't have to declare themselves to the IO APIC and don't have
to have a pointer to the platform object.
|
|
|
|
Not all objects need a platform pointer, and having one creates a dependence
on their being a platform object. This change removes the platform pointer to
from the base device object and moves it into subclasses that actually need
it.
|
|
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
|
|
|
|
|
|
Add checkpointing capability to the x86 interrupt device and the TLBs
|
|
The x86 local apic now includes a separate latency parameter for interrupts.
|
|
delete
Double packet delete problem is due to an interrupt device deleting a packet that the SimpleTimingPort also deletes. Since MessagePort descends from SimpleTimingPort, simply reimplement the failing code from SimpleTimingPort: recvTiming.
|
|
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
|
|
This is to help tidy up arch/x86. These files should not be used external to
the ISA.
--HG--
rename : src/arch/x86/apicregs.hh => src/arch/x86/regs/apic.hh
rename : src/arch/x86/floatregs.hh => src/arch/x86/regs/float.hh
rename : src/arch/x86/intregs.hh => src/arch/x86/regs/int.hh
rename : src/arch/x86/miscregs.hh => src/arch/x86/regs/misc.hh
rename : src/arch/x86/segmentregs.hh => src/arch/x86/regs/segment.hh
|
|
|
|
|
|
figuring it out itself.
|
|
This is a hack so that the IO APIC can figure out information about the local
APICs. The local APICs still have no way to find out about each other.
Ideally, when the local APICs update state that's relevant to somebody else,
they'd send an update to everyone. Without being able to do a broadcast, that
would still require knowing who else there is to notify. Other broadcasts are
implemented using assumptions that may not always be true.
|
|
The ID as exposed to software can be changed. Tracking those changes in M5
would be cumbersome, especially since there's no guarantee the IDs will remain
unique.
|
|
|
|
|
|
|
|
delivered.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|