Age | Commit message (Collapse) | Author |
|
|
|
|
|
Code in the CPUs that need a nop to carry a fault can't easily deal with a
microcoded nop. This instruction format provides for one that isn't.
--HG--
rename : src/arch/x86/isa/formats/syscall.isa => src/arch/x86/isa/formats/nop.isa
|
|
Even though this shouldn't ever be used, it might get called speculatively and
shouldn't panic.
|
|
|
|
When no size is specified for an argument, push the decision about what size
to use into the ISA by passing a size of -1.
|
|
|
|
In the process make add skipFuction() to handle isa specific function skipping
instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can
only start in even registers. Size is now passed to getArgument() so that 32
bit systems can make decisions about register selection for 64 bit arguments.
The number argument is now passed by reference because getArgument() will need
to change it based on the size of the argument and the current argument number.
For ARM, if the argument number is odd and a 64-bit register is requested the
number must first be incremented to because all 64 bit arguments are passed
in an even argument register. Then the number will be incremented again to
access both halves of the argument.
|
|
|
|
Executing this microop makes the CPU halt even if it was misspeculated.
|
|
|
|
This reduces the scope of those includes and makes it less likely for there to
be a dependency loop. This also moves the hashing functions associated with
ExtMachInst objects to be with the ExtMachInst definitions and out of
utility.hh.
|
|
Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
|
|
|
|
I accidentally left myself as a placeholder copyright holder on this file when
I checked it in. Copyright should be assigned to AMD.
|
|
When decoding a srs instruction, invalid mode encoding returns invalid instruction.
This can happen when garbage instructions are fetched from mispredicted path
|
|
This is to help tidy up arch/x86. These files should not be used external to
the ISA.
--HG--
rename : src/arch/x86/apicregs.hh => src/arch/x86/regs/apic.hh
rename : src/arch/x86/floatregs.hh => src/arch/x86/regs/float.hh
rename : src/arch/x86/intregs.hh => src/arch/x86/regs/int.hh
rename : src/arch/x86/miscregs.hh => src/arch/x86/regs/misc.hh
rename : src/arch/x86/segmentregs.hh => src/arch/x86/regs/segment.hh
|
|
|
|
This will reduce clutter in the source and hopefully speed up compilation.
|
|
The fault object, if invoked, would then panic. This is a bit less direct, but
it means speculative execution won't panic the simulator.
|
|
--HG--
rename : src/arch/x86/types.hh => src/arch/x86/types.cc
|
|
|
|
|
|
This directive really just tells the macroop to set IsSerializing and
IsSerializeAfter on its final microop.
|
|
This single parameter replaces the collection of bools that set up various
flavors of microops. A flag parameter also allows other flags to be set like
the serialize before/after flags, etc., without having to change the
constructor.
|
|
a constant.
This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.
|
|
|
|
This function is always overridden, and doesn't actually have the right
signature.
|
|
|
|
Replace direct call to unserialize() on each SimObject with a pair of
calls for better control over initialization in both ckpt and non-ckpt
cases.
If restoring from a checkpoint, loadState(ckpt) is called on each
SimObject. The default implementation simply calls unserialize() if
there is a corresponding checkpoint section, so we get backward
compatibility for existing objects. However, objects can override
loadState() to get other behaviors, e.g., doing other programmed
initializations after unserialize(), or complaining if no checkpoint
section is found. (Note that the default warning for a missing
checkpoint section is now gone.)
If not restoring from a checkpoint, we call the new initState() method
on each SimObject instead. This provides a hook for state
initializations that are only required when *not* restoring from a
checkpoint.
Given this new framework, do some cleanup of LiveProcess subclasses
and X86System, which were (in some cases) emulating initState()
behavior in startup via a local flag or (in other cases) erroneously
doing initializations in startup() that clobbered state loaded earlier
by unserialize().
|
|
|
|
|
|
Found several more stale includes and forward decls.
|
|
|
|
|
|
The code was using the wrong bit as the sign bit. Other similar bits of code
seem to be correct.
|
|
|
|
|
|
|
|
When doing an unsigned 64 bit division with a divisor that has its most
significant bit set, the division code would spill a bit off of the end of a
uint64_t trying to shift the dividend into position. This change adds code
that handles that case specially by purposefully letting it spill and then
going ahead assuming there was a 65th one bit.
|
|
When each load or store is sent to the LSQ, we check whether it will cross a
cache line boundary and, if so, split it in two. This creates two TLB
translations and two memory requests. Care has to be taken if the first
packet of a split load is sent but the second blocks the cache. Similarly,
for a store, if the first packet cannot be sent, we must store the second
one somewhere to retry later.
This modifies the LSQSenderState class to record both packets in a split
load or store.
Finally, a new const variable, HasUnalignedMemAcc, is added to each ISA
to indicate whether unaligned memory accesses are allowed. This is used
throughout the changed code so that compiler can optimise away code dealing
with split requests for ISAs that don't need them.
|
|
|
|
|
|
|
|
|
|
Some of the micro-ops weren't casting 1 to ULL before shifting,
which can cause problems. On the perl makerand input this
caused some values to be negative that shouldn't have been.
The casts are done as ULL(1) instead of 1ULL to match others
in the m5 code base.
|
|
|
|
Unfortunately my implementation of the movd instruction had two bugs.
In one case, when moving a 32-bit value into an xmm register, the
lower half of the xmm register was not zero extended.
The other case is that xmm was used instead of xmmlm as the source
for a register move. My test case didn't notice this at first
as it moved xmm0 to eax, which both have the same register
number.
|
|
This double cast led to rounding errors which caused
some benchmarks to get the wrong values, most notably lucas
which failed spectacularly due to CVTTSD2SI returning an
off-by-one value. equake was also broken.
|
|
|