Age | Commit message (Collapse) | Author |
|
This patch removes the NACK frrom the packet as there is no longer any
module in the system that issues them (the bridge was the only one and
the previous patch removes that).
The handling of NACKs was mostly avoided throughout the code base, by
using e.g. panic or assert false, but in a few locations the NACKs
were actually dealt with (although NACKs never occured in any of the
regressions). Most notably, the DMA port will now never receive a NACK
and the backoff time is thus never changed. As a consequence, the
entire backoff mechanism (similar to a PCI bus) is now removed and the
DMA port entirely relies on the bus performing the arbitration and
issuing a retry when appropriate. This is more in line with e.g. PCIe.
Surprisingly, this patch has no impact on any of the regressions. As
mentioned in the patch that removes the NACK from the bridge, a
follow-up patch should change the request and response buffer size for
at least one regression to also verify that the system behaves as
expected when the bridge fills up.
|
|
This patch removes the overloading of the parameter, which seems both
redundant, and possibly incorrect.
The PciConfigAll now also uses a Param.Latency rather than a
Param.Tick. For backwards compatibility it still sets the pio_latency
to 1 tick. All the comments have also been updated to not state that
it is in simticks when it is not necessarily the case.
|
|
This patch moves the clock of the CPU, bus, and numerous devices to
the new class ClockedObject, that sits in between the SimObject and
MemObject in the class hierarchy. Although there are currently a fair
amount of MemObjects that do not make use of the clock, they
potentially should do so, e.g. the caches should at some point have
the same clock as the CPU, potentially with a 1:n ratio. This patch
does not introduce any new clock objects or object hierarchies
(clusters, clock domains etc), but is still a step in the direction of
having a more structured approach clock domains.
The most contentious part of this patch is the serialisation of clocks
that some of the modules (but not all) did previously. This
serialisation should not be needed as the clock is set through the
parameters even when restoring from the checkpoint. In other words,
the state is "stored" in the Python code that creates the modules.
The nextCycle methods are also simplified and the clock phase
parameter of the CPU is removed (this could be part of a clock object
once they are introduced).
|
|
New tool chains seem to be looking for kernel versions newer than what
this this was previously set to. Also take this opportunity to change
the hostname we report in uname to sim.gem5.org.
|
|
Added/moved rlimit constants to base linux header file.
This patch is a revised version of Vince Weaver's earlier patch.
|
|
Enable different whitelists for different OS/arch combinations,
since some use the generic Linux definitions only, and others
use definitions inherited from earlier Unix flavors on those
architectures.
Also update x86 function pointers so ioctl is no longer
unimplemented on that platform.
This patch is a revised version of Vince Weaver's earlier patch.
|
|
|
|
|
|
|
|
|
|
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
|
|
|
|
Due to recent changes to X86 TLB, gem5 stopped compiling on
gcc version 4.4.3. This patch provides the fix for that problem. The patch
is tested on gcc 4.4.3. The change is not required for more recent
versions of gcc (like on 4.6.3).
|
|
|
|
DynInst is extremely large the hope is that this re-organization will put the
most used members close to each other.
|
|
While FastAlloc provides a small performance increase (~1.5%) over regular malloc it isn't thread safe.
After removing FastAlloc and using tcmalloc I've seen a performance increase of 12% over libc malloc
when running twolf for ARM.
|
|
This eliminates a use of the ExtMachInst type outside of the ISAs.
|
|
The CPUID instruction was implemented so that it would only write its results
if the instruction was successful. This works fine on the simple CPU where
unwritten registers retain their old values, but on a CPU like O3 with
renaming this is broken. The instruction needs to write the old values back
into the registers explicitly if they aren't being changed.
|
|
There are some bits of some fields of the ExtMachInst which are not actually
used for anything but are included in the hash of an ExtMachInst for
simplicity and efficiency. This change makes sure the decoder's internal
working ExtMachInst is completely initialized, even these unused bits, so that
there isn't any nondeterministic behavior, no valgrind messages about
uninitialized variables, and no potential false misses/redundant entries in
the decode cache.
|
|
|
|
The GDT can be accessed by user level software running in compatibility mode
by moving segment selectors into segment registers. The GDT needs to be set up
at an address accessible in this mode.
|
|
A small change was added a while ago to keep addresses from overflowing 32
bits when larger addresses shouldn't be accessible to software. That change
truncated when not in long mode, but really it should have truncated when not
in 64 bit mode. The difference is whether compatibility mode is included, a
mode that's supposed to act like a legacy 32 bit mode.
|
|
This will allow it to be specialized by the ISAs. The existing caching scheme
is provided by the BasicDecodeCache in the GenericISA namespace and is built
from the generalized components.
--HG--
rename : src/cpu/decode_cache.cc => src/arch/generic/decode_cache.cc
|
|
These classes are always used together, and merging them will give the ISAs
more flexibility in how they cache things and manage the process.
--HG--
rename : src/arch/x86/predecoder_tables.cc => src/arch/x86/decoder_tables.cc
|
|
|
|
--HG--
rename : src/cpu/decode.cc => src/arch/generic/decoder.cc
rename : src/cpu/decode.hh => src/arch/generic/decoder.hh
|
|
This patch moves the ECF and EZF bits to individual registers (ecfBit and
ezfBit) and the CF and OF bits to cfofFlag registers. This is being done
so as to lower the read after write dependencies on the the condition code
register. Ultimately we will have the following registers [ZAPS], [OF],
[CF], [ECF], [EZF] and [DF]. Note that this is only one part of the
solution for lowering the dependencies. The other part will check whether
or not the condition code register needs to be actually read. This would
be done through a separate patch.
|
|
Shuffle the 32 bit values into position, and then add in parallel.
|
|
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.
For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).
The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.
With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
|
|
The disp displacement was left off the load microop so the wrong value was
used.
|
|
|
|
|
|
It's possible for two page table walks to overlap which will go in the same
place in the TLB's trie. They would land on top of each other, so this change
adds some code which detects if an address already matches an entry and if so
throws away the new one.
|
|
This is to avoid collision with non-generated files.
|
|
This way the user gets a nice message instead of a less nice segfault.
|
|
The parameter is _machInst, which is very similar to the member machInst. If
machInst is used to pass the parameter to a lower level constructor, what
really happens is that machInst is set to whatever it already happened to be,
effectively leaving it uninitialized.
|
|
This change also adjusts the TlbEntry class so that it stores the number of
address bits wide a page is rather than its size in bytes. In other words,
instead of storing 4K for a 4K page, it stores 12. 12 is easy to turn into 4K,
but it's a little harder going the other way.
|
|
This patch simplifies the packet by removing the broadcast flag and
instead more firmly relying on (and enforcing) the semantics of
transactions in the classic memory system, i.e. request packets are
routed from a master to a slave based on the address, and when they
are created they have neither a valid source, nor destination. On
their way to the slave, the request packet is updated with a source
field for all modules that multiplex packets from multiple master
(e.g. a bus). When a request packet is turned into a response packet
(at the final slave), it moves the potentially populated source field
to the destination field, and the response packet is routed through
any multiplexing components back to the master based on the
destination field.
Modules that connect multiplexing components, such as caches and
bridges store any existing source and destination field in the sender
state as a stack (just as before).
The packet constructor is simplified in that there is no longer a need
to pass the Packet::Broadcast as the destination (this was always the
case for the classic memory system). In the case of Ruby, rather than
using the parameter to the constructor we now rely on setDest, as
there is already another three-argument constructor in the packet
class.
In many places where the packet information was printed as part of
DPRINTFs, request packets would be printed with a numeric "dest" that
would always be -1 (Broadcast) and that field is now removed from the
printing.
|
|
This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.
Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.
Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.
Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.
The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.
In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
|
|
This patch addresses a number of minor issues that cause problems when
compiling with clang >= 3.0 and gcc >= 4.6. Most importantly, it
avoids using the deprecated ext/hash_map and instead uses
unordered_map (and similarly so for the hash_set). To make use of the
new STL containers, g++ and clang has to be invoked with "-std=c++0x",
and this is now added for all gcc versions >= 4.6, and for clang >=
3.0. For gcc >= 4.3 and <= 4.5 and clang <= 3.0 we use the tr1
unordered_map to avoid the deprecation warning.
The addition of c++0x in turn causes a few problems, as the
compiler is more stringent and adds a number of new warnings. Below,
the most important issues are enumerated:
1) the use of namespaces is more strict, e.g. for isnan, and all
headers opening the entire namespace std are now fixed.
2) another other issue caused by the more stringent compiler is the
narrowing of the embedded python, which used to be a char array,
and is now unsigned char since there were values larger than 128.
3) a particularly odd issue that arose with the new c++0x behaviour is
found in range.hh, where the operator< causes gcc to complain about
the template type parsing (the "<" is interpreted as the beginning
of a template argument), and the problem seems to be related to the
begin/end members introduced for the range-type iteration, which is
a new feature in c++11.
As a minor update, this patch also fixes the build flags for the clang
debug target that used to be shared with gcc and incorrectly use
"-ggdb".
|
|
Virtual (pre-segmentation) addresses are truncated based on address size, and
any non-64 bit linear address is truncated to 32 bits. This means that real
mode addresses aren't truncated down to 16 bits after their segment bases are
added in.
|
|
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
|
|
This patch cleans up a number of minor issues aiming to get closer to
compliance with the C++0x standard as interpreted by gcc and clang
(compile with std=c++0x and -pedantic-errors). In particular, the
patch cleans up enums where the last item was succeded by a comma,
namespaces closed by a curcly brace followed by a semi-colon, and the
use of the GNU-extension typeof (replaced by templated functions). It
does not address variable-length arrays, zero-size arrays, anonymous
structs, range expressions in switch statements, and the use of long
long. The generated CPU code also has a large number of issues that
remain to be fixed, mainly related to overflows in implicit constant
conversion (due to shifts).
|
|
This patch makes the code compile with clang 2.9 and 3.0 again by
making two very minor changes. Firt, it maintains a strict typing in
the forward declaration of the BaseCPUParams. Second, it adds a
FullSystemInt flag of the type unsigned int next to the boolean
FullSystem flag. The FullSystemInt variable can be used in
decode-statements (expands to switch statements) in the instruction
decoder.
|
|
Making the CheckerCPU a runtime time option requires the code to be compatible
with ISAs other than ARM. This patch adds the appropriate function
stubs to allow compilation.
|
|
This patch adds a function to X86 tlb that returns the
walker port. This port is required for correctly connecting
the walker ports for the cpu just switched in
|
|
If an instruction is executed speculatively and hits a situation where it
wants to panic, it should return a fault instead. If the instruction was
misspeculated, the fault can be thrown away. If the instruction wasn't
misspeculated, the fault will be invoked and the panic will still happen.
|
|
This patch is adding a clearer design intent to all objects that would
not be complete without a port proxy by making the proxies members
rathen than dynamically allocated. In essence, if NULL would not be a
valid value for the proxy, then we avoid using a pointer to make this
clear.
The same approach is used for the methods using these proxies, such as
loadSections, that now use references rather than pointers to better
reflect the fact that NULL would not be an acceptable value (in fact
the code would break and that is how this patch started out).
Overall the concept of "using a reference to express unconditional
composition where a NULL pointer is never valid" could be done on a
much broader scale throughout the code base, but for now it is only
done in the locations affected by the proxies.
|
|
This patch moves all port creation from the getPort method to be
consistently done in the MemObject's constructor. This is possible
thanks to the Swig interface passing the length of the vector ports.
Previously there was a mix of: 1) creating the ports as members (at
object construction time) and using getPort for the name resolution,
or 2) dynamically creating the ports in the getPort call. This is now
uniform. Furthermore, objects that would not be complete without a
port have these ports as members rather than having pointers to
dynamically allocated ports.
This patch also enables an elaboration-time enumeration of all the
ports in the system which can be used to determine the masterId.
|
|
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
|