Age | Commit message (Collapse) | Author |
|
A memory image can be described by an object file, but an object file
is more than a memory image. Also, it makes sense to manipulate a
memory image to, for instance, change how it's loaded into memory. That
takes on larger implications (relocations, the entry point, symbols,
etc.) when talking about the whole object file, and also modifies
aspects which may not need to change. For instance if an image needs
to be loaded into memory at addresses different from what's in the
object file, but other things like symbols need to stay unmodified.
Change-Id: Ia360405ffb2c1c48e0cc201ac0a0764357996a54
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21466
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
The interpreter is a separate object file, and while it's convenient to
hide loading it in the code which loads the main object file, it breaks
the conceptual abstraction since you only asked it to load the main
object file.
Also, this makes every object file format reimplement the idea of
loading the interpreter. Admittedly only ELF recognizes and sets up
an interpreter, but other formats conceptually could too.
This does move that limitted hypothetical redundancy out of the object
file formats and moves it into the process objects, but I think
conceptually that's where it belongs. It would also probably be pretty
easy to add a method to the base Process class that would handle
loading an image and also the interpreter image.
This change does not (yet) separate reading symbol tables.
Change-Id: I4a165eac599a9bcd30371a162379e833c4cc89b4
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21465
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
The ObjectFile class has hardcoded assumptions that there are three
segments, text, bss and data. There are some files which have one
"segment" like raw files, where the entire file's contents are
considered a single segment. There are also ELF files which can have
an arbitrary number of segments, and those segments can hold any
number of sections, including the text, data and/or bss sections.
Removing this assumption frees up some object file formats from having
to twist themselves to fit in that structure, possibly introducing
ambiguities when some segments may fulfill multiple roles.
Change-Id: I976e06a3a90ef852b17a6485e2595b006b2090d5
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21463
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
A pointer to it was set up in the MIPS and RISCV system classes, but
nothing ever set that pointer. The class was put in base/loader, but
didn't have anything to do (as far as I can see) with loading anything
it had a loadSegments method, but was not a subclass of ObjectFile.
Change-Id: I4b711a31df20e20ffc306709227f60aa020fca15
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21464
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
ELF is, in my opinion, the most important object file format gem5
currently understands, and in ELF terminolgy the blob of data that
needs to be loaded into memory to a particular location is called a
segment. A section is a software level view of what's in a region
of memory, and a single segment may contain multiple sections which
happen to follow each other in memory.
Change-Id: Ib810c5050723d5a96bd7550515b08ac695fb1b02
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21462
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
This was only ever read from Alpha, and nothing ever set it.
It defaulted to zero, so this change just propogates that value through
to the Alpha Process class.
Change-Id: I569cf9d61a37322dbd88de1038a2af74c64bbe7a
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21461
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
The ELF segment type had been checked by bitwise &-ing it with the
PT_LOAD constant to check if it was loadable. This is incorrect. The
value is a flat integer, with different values selecting different
types of segments.
Change-Id: I644dd985bda4ad2d992557c90ffe8048c0ae6aac
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21460
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
|
|
The port proxy can be declared as a reference to a const proxy
rather than just a reference to a proxy.
Change-Id: I4640b0c5f33e2334c1e7630131f78607ced40a34
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/12301
Maintainer: Brandon Potter <Brandon.Potter@amd.com>
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Change-Id: Ia73b2d86a10d02fa09c924a4571477bb5f200eb7
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18572
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
This avoids having a big pile of #if-s in sim/process.cc and allows
dynamically adding new types of object file loaders which might
recognize new arch/OS combinations.
Change-Id: Ie3b9c1aa2974d30a61afc4fcc529ffd6a74d43e0
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18583
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This code will be preserved through version control, but otherwise
creates clutter and will rot in place since it's never compiled.
Change-Id: Id265f6deac445116843956ea5cf1210d8127274e
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18608
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This patch splits up the riscv SE mode support for 32 and 64-bit.
A future patch will add support for decoding rv32 instructions.
Change-Id: Ia79ae19f753caf94dc7e5830a6630efb94b419d7
Signed-off-by: Austin Harris <austinharris@utexas.edu>
Reviewed-on: https://gem5-review.googlesource.com/c/15355
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Alec Roelke <alec.roelke@gmail.com>
Maintainer: Alec Roelke <alec.roelke@gmail.com>
|
|
Several files in the repository were tracked with execute permissions
even though the files are just normal C/C++ files (and the one .isa).
Change-Id: I976b096acab4a1fc74c5699ef1f9b222c1e635c2
Reviewed-on: https://gem5-review.googlesource.com/7241
Reviewed-by: Gabe Black <gabeblack@google.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
These files aren't a collection of miscellaneous stuff, they're the
definition of the Logger interface, and a few utility macros for
calling into that interface (panic, warn, etc.).
Change-Id: I84267ac3f45896a83c0ef027f8f19c5e9a5667d1
Reviewed-on: https://gem5-review.googlesource.com/6226
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
This changeset fixes line alignment issues, spacing, spelling,
etc. for files that are used during SE Mode.
Change-Id: Ie61b8d0eb4ebb5af554d72f1297808027833616e
Reviewed-on: https://gem5-review.googlesource.com/2264
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Tony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Michael LeBeane <Michael.Lebeane@amd.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Pierre-Yves PĂ©neau <pierre-yves.peneau@lirmm.fr>
|
|
|
|
|
|
|
|
First of five patches adding RISC-V to GEM5. This patch introduces the
base 64-bit ISA (RV64I) in src/arch/riscv for use with syscall emulation.
The multiply, floating point, and atomic memory instructions will be added
in additional patches, as well as support for more detailed CPU models.
The loader is also modified to be able to parse RISC-V ELF files, and a
"Hello world\!" example for RISC-V is added to test-progs.
Patch 2 will implement the multiply extension, RV64M; patch 3 will implement
the floating point (single- and double-precision) extensions, RV64FD;
patch 4 will implement the atomic memory instructions, RV64A, and patch 5
will add support for timing, minor, and detailed CPU models that is missing
from the first four patches (such as handling locked memory).
[Removed several unused parameters and imports from RiscvInterrupts.py,
RiscvISA.py, and RiscvSystem.py.]
[Fixed copyright information in RISC-V files copied from elsewhere that had
ARM licenses attached.]
[Reorganized instruction definitions in decoder.isa so that they are sorted
by opcode in preparation for the addition of ISA extensions M, A, F, D.]
[Fixed formatting of several files, removed some variables and
instructions that were missed when moving them to other patches, fixed
RISC-V Foundation copyright attribution, and fixed history of files
copied from other architectures using hg copy.]
[Fixed indentation of switch cases in isa.cc.]
[Reorganized syscall descriptions in linux/process.cc to remove large
number of repeated unimplemented system calls and added implmementations
to functions that have received them since it process.cc was first
created.]
[Fixed spacing for some copyright attributions.]
[Replaced the rest of the file copies using hg copy.]
[Fixed style check errors and corrected unaligned memory accesses.]
[Fix some minor formatting mistakes.]
Signed-off by: Alec Roelke
Signed-off by: Jason Lowe-Power <jason@lowepower.com>
|
|
|
|
The ELF loader currently has an assertion that checks if the size of a
loaded .text secion is non-zero. This is useful in the general case as
an empty text section normally indicates that there is something
strange with the ELF file. However, asserting isn't very useful. This
changeset converts the assert into a warning that tells the user that
something strange is happening.
Change-Id: I313e17847b50a0eca00f6bd00a54c610d626c0f0
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
|
|
The SymbolTable class currently assumes that at most one symbol can
point to a given address. If multiple symbols point to the same
address, only the first one gets added to the internal symbol table
since there is already a match in the address table.
This changeset converts the address table from a map into a multimap
to be able to handle cases where an address maps to multiple
symbols. Additionally, the insert method is changed to not fail if
there is a match in the address table.
Change-Id: I6b4f1d5560c21e49a4af33220efb2a8302961768
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Andreas Hansson <andreas.hansson@arm.com>
Reviewed-by: Gabor Dozsa <gabor.dozsa@arm.com>
|
|
Libraries are loaded into the process address space using the
mmap system call. Conveniently, this happens to be a good
time to update the process symbol table with the library's
incoming symbols so we handle the table update from within the
system call.
This works just like an application's normal symbols. The only
difference between a dynamic library and a main executable is
when the symbol table update occurs. The symbol table update for
an executable happens at program load time and is finished before
the process ever begins executing. Since dynamic linking happens
at runtime, the symbol loading happens after the library is
first loaded into the process address space. The library binary
is examined at this time for a symbol section and that section
is parsed for symbol types with specific bindings (global,
local, weak). Subsequently, these symbols are added to the table
and are available for use by gem5 for things like trace
generation.
Checkpointing should work just as it did previously. The address
space (and therefore the library) will be recorded and the symbol
table will be entirely recorded. (It's not possible to do anything
clever like checkpoint a program and then load the program back
with different libraries with LD_LIBRARY_PATH, because the
library becomes part of the address space after being loaded.)
|
|
|
|
|
|
|
|
Result of running 'hg m5style --skip-all --fix-control -a'.
|
|
Result of running 'hg m5style --skip-all --fix-white -a'.
|
|
A few minor fixes to issues identified by the clang static analyzer.
|
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
All the object loaders directly examine the (already completely loaded
by object_file.cc) memory image. There is no current motivation to
keep the fd around.
|
|
This adds support for FreeBSD/aarch64 FS and SE mode (basic set of syscalls only)
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Automatically extract cpu release address from DTB file.
Check SCTLR_EL1 to verify all caches are enabled.
|
|
Another bunch of issues addressed.
|
|
Static analysis unearther a bunch of uninitialised variables and
members, and this patch addresses the problem. In all cases these
omissions seem benign in the end, but at least fixing them means less
false positives next time round.
|
|
Using '== true' in a boolean expression is totally redundant,
and using '== false' is pretty verbose (and arguably less
readable in most cases) compared to '!'.
It's somewhat of a pet peeve, perhaps, but I had some time
waiting for some tests to run and decided to clean these up.
Unfortunately, SLICC appears not to have the '!' operator,
so I had to leave the '== false' tests in the SLICC code.
|
|
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.
Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.
Contributors:
Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole (AArch64 NEON, validation)
Ali Saidi (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang (AArch64 Linux support)
Rene De Jong (AArch64 Linux support, performance opt.)
Matt Horsnell (AArch64 MP, validation)
Matt Evans (device models, code integration, validation)
Chris Adeniyi-Jones (AArch64 syscall-emulation)
Prakash Ramrakhyani (validation)
Dam Sunwoo (validation)
Chander Sudanthi (validation)
Stephan Diestelhorst (validation)
Andreas Hansson (code integration, performance opt.)
Eric Van Hensbergen (performance opt.)
Gabe Black
|
|
|
|
Without loading weak symbols into gem5, some function names and the given PC
cannot correspond correctly, because the binding attributes of unction names
in an ELF file are not only STB_GLOBAL or STB_LOCAL, but also STB_WEAK. This
patch adds a function for loading weak symbols.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
this adds a dtb_object so the loader can load in the dtb
file for linux/android ARM kernels.
|
|
Newer Linux kernels require DTB (device tree blobs) to specify platform
configurations. The input DTB filename can be specified through gem5 parameters
in LinuxArmSystem.
|
|
Some bare metal build flows seem to build binaries that we aren't necessarily
expecting. Initialize everything to 0, so we don't make any assumptions about
what is or isn't in the binary.
|
|
This patch is the result of static analysis identifying a number of
memory leaks. The leaks are all benign as they are a result of not
deallocating memory in the desctructor. The fix still has value as it
removes false positives in the static analysis.
|
|
This patch is adding a clearer design intent to all objects that would
not be complete without a port proxy by making the proxies members
rathen than dynamically allocated. In essence, if NULL would not be a
valid value for the proxy, then we avoid using a pointer to make this
clear.
The same approach is used for the methods using these proxies, such as
loadSections, that now use references rather than pointers to better
reflect the fact that NULL would not be an acceptable value (in fact
the code would break and that is how this patch started out).
Overall the concept of "using a reference to express unconditional
composition where a NULL pointer is never valid" could be done on a
much broader scale throughout the code base, but for now it is only
done in the locations affected by the proxies.
|
|
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
If there's a problem when reading the section names from a supposed ELF file,
this change makes gem5 print an error message as returned by libelf and die.
Previously these sorts of errors would make gem5 segfault when it tried to
access the section name through a NULL pointer.
|
|
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
|
|
|
|
|
|
|