summaryrefslogtreecommitdiff
path: root/src/cpu/base.cc
AgeCommit message (Collapse)Author
2018-06-21cpu: Fix bug introduced by RequestPtr type changeGiacomo Travaglini
Missing buffer allocation in mwaitAtomic. Change-Id: Ifccb6df2427df8b0daac5ee6a99e5cca0b20825e Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com> Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com> Reviewed-on: https://gem5-review.googlesource.com/11469 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2018-06-11misc: Using smart pointers for memory RequestsGiacomo Travaglini
This patch is changing the underlying type for RequestPtr from Request* to shared_ptr<Request>. Having memory requests being managed by smart pointers will simplify the code; it will also prevent memory leakage and dangling pointers. Change-Id: I7749af38a11ac8eb4d53d8df1252951e0890fde3 Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/10996 Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com> Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
2018-04-27sim,cpu,mem,arch: Introduced MasterInfo data structureGiacomo Travaglini
With this patch a gem5 System will store more info about its Masters. While it was previously keeping track of the Master name and Master ID only, it is now adding a per-Master pointer to the SimObject related to the Master. This will make it possible for a client to query a System for a Master using either the master's name or the master's pointer. Change-Id: I8b97d328a65cd06f329e2cdd3679451c17d2b8f6 Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/9781 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
2017-12-22arch,cpu: "virtualize" the TLB interface.Gabe Black
CPUs have historically instantiated the architecture specific version of the TLBs to avoid a virtual function call, making them a little bit more dependent on what the current ISA is. Some simple performance measurement, the x86 twolf regression on the atomic CPU, shows that there isn't actually any performance benefit, and if anything the simulator goes slightly faster (although still within margin of error) when the TLB functions are virtual. This change switches everything outside of the architectures themselves to use the generic BaseTLB type, and then inside the ISA for them to cast that to their architecture specific type to call into architecture specific interfaces. The ARM TLB needed the most adjustment since it was using non-standard translation function signatures. Specifically, they all took an extra "type" parameter which defaulted to normal, and translateTiming returned a Fault. translateTiming actually doesn't need to return a Fault because everywhere that consumed it just stored it into a structure which it then deleted(?), and the fault is stored in the Translation object when the translation is done. A little more work is needed to fully obviate the arch/tlb.hh header, so the TheISA::TLB type is still visible outside of the ISAs. Specifically, the TlbEntry type is used in the generic PageTable which lives in src/mem. Change-Id: I51b68ee74411f9af778317eff222f9349d2ed575 Reviewed-on: https://gem5-review.googlesource.com/6921 Maintainer: Gabe Black <gabeblack@google.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2017-12-04misc: Rename misc.(hh|cc) to logging.(hh|cc)Gabe Black
These files aren't a collection of miscellaneous stuff, they're the definition of the Logger interface, and a few utility macros for calling into that interface (panic, warn, etc.). Change-Id: I84267ac3f45896a83c0ef027f8f19c5e9a5667d1 Reviewed-on: https://gem5-review.googlesource.com/6226 Reviewed-by: Brandon Potter <Brandon.Potter@amd.com> Maintainer: Gabe Black <gabeblack@google.com>
2017-11-21cpu, cpu, sim: move Cycle probe updateJose Marinho
Move the code responsible for performing the actual probe point notify into BaseCPU. Use BaseCPU activateContext and suspendContext to keep track of sleep cycles. Create a probe point (ppActiveCycles) that does not count cycles where the processor was asleep. Rename ppCycles to ppAllCycles to reflect its nature. Change-Id: I1907ddd07d0ff9f2ef22cc9f61f5f46c630c9d66 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/5762 Maintainer: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2017-11-20cpu: Make automatic transition to OFF optionalJose Marinho
Add the power_gating_on_idle option to control whether a core automatically enters the power gated state. The default behaviour is to transition to clock gated when idle, but not to power gated. When this option is set to true, the core automatically transitions to the power gated state after a configurable latency. Change-Id: Ida98c7fc532de4140d0e511c25613769b47b3702 Reviewed-on: https://gem5-review.googlesource.com/5741 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2017-11-20pwr: Adds logic to enter power gating for the cpu modelAnouk Van Laer
If the CPU has been clock gated for a sufficient amount of time (configurable via pwrGatingLatency), the CPU will go into the OFF power state. This does not model hardware, just behaviour. Change-Id: Ib3681d1ffa6ad25eba60f47b4020325f63472d43 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/3969 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2017-07-12cpu: Refactor some Event subclasses to lambdasSean Wilson
Change-Id: If765c6100d67556f157e4e61aa33c2b7eeb8d2f0 Signed-off-by: Sean Wilson <spwilson2@wisc.edu> Reviewed-on: https://gem5-review.googlesource.com/3923 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Jason Lowe-Power <jason@lowepower.com>
2017-07-12cpu, sim: Add param to force CPUs to wait for GDBJose Marinho
By setting the BaseCPU parameter wait_for_dbg_connection, the GDB server blocks during initialisation waiting for the remote debugger to connect before starting the simulated CPU. Change-Id: I4d62c68ce9adf69344bccbb44f66e30b33715a1c [ Update info message to include remote GDB port, rename param. ] Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/3963 Reviewed-by: Gabe Black <gabeblack@google.com> Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
2017-06-20cpu, gpu-compute: Replace EventWrapper use with EventFunctionWrapperSean Wilson
Change-Id: Idd5992463bcf9154f823b82461070d1f1842cea3 Signed-off-by: Sean Wilson <spwilson2@wisc.edu> Reviewed-on: https://gem5-review.googlesource.com/3746 Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Jason Lowe-Power <jason@lowepower.com>
2015-07-20syscall_emul: [patch 13/22] add system call retry capabilityBrandon Potter
This changeset adds functionality that allows system calls to retry without affecting thread context state such as the program counter or register values for the associated thread context (when system calls return with a retry fault). This functionality is needed to solve problems with blocking system calls in multi-process or multi-threaded simulations where information is passed between processes/threads. Blocking system calls can cause deadlock because the simulator itself is single threaded. There is only a single thread servicing the event queue which can cause deadlock if the thread hits a blocking system call instruction. To illustrate the problem, consider two processes using the producer/consumer sharing model. The processes can use file descriptors and the read and write calls to pass information to one another. If the consumer calls the blocking read system call before the producer has produced anything, the call will block the event queue (while executing the system call instruction) and deadlock the simulation. The solution implemented in this changeset is to recognize that the system calls will block and then generate a special retry fault. The fault will be sent back up through the function call chain until it is exposed to the cpu model's pipeline where the fault becomes visible. The fault will trigger the cpu model to replay the instruction at a future tick where the call has a chance to succeed without actually going into a blocking state. In subsequent patches, we recognize that a syscall will block by calling a non-blocking poll (from inside the system call implementation) and checking for events. When events show up during the poll, it signifies that the call would not have blocked and the syscall is allowed to proceed (calling an underlying host system call if necessary). If no events are returned from the poll, we generate the fault and try the instruction for the thread context at a distant tick. Note that retrying every tick is not efficient. As an aside, the simulator has some multi-threading support for the event queue, but it is not used by default and needs work. Even if the event queue was completely multi-threaded, meaning that there is a hardware thread on the host servicing a single simulator thread contexts with a 1:1 mapping between them, it's still possible to run into deadlock due to the event queue barriers on quantum boundaries. The solution of replaying at a later tick is the simplest solution and solves the problem generally.
2016-11-09style: [patch 1/22] use /r/3648/ to reorganize includesBrandon Potter
2016-06-06pwr: Low-power idle power state for idle CPUsDavid Guillen Fandos
Add functionality to the BaseCPU that will put the entire CPU into a low-power idle state whenever all threads in it are idle. Change-Id: I984d1656eb0a4863c87ceacd773d2d10de5cfd2b
2016-06-06sim: Call regStats of base-class as wellStephan Diestelhorst
We want to extend the stats of objects hierarchically and thus it is necessary to register the statistics of the base-class(es), as well. For now, these are empty, but generic stats will be added there. Patch originally provided by Akash Bagdia at ARM Ltd.
2016-04-06Revert power patch sets with unexpected interactionsAndreas Sandberg
The following patches had unexpected interactions with the current upstream code and have been reverted for now: e07fd01651f3: power: Add support for power models 831c7f2f9e39: power: Low-power idle power state for idle CPUs 4f749e00b667: power: Add power states to ClockedObject Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> --HG-- extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
2014-12-09power: Low-power idle power state for idle CPUsAkash Bagdia
Add functionality to the BaseCPU that will put the entire CPU into a low-power idle state whenever all threads in it are idle.
2016-04-05cpu: Query CPU for inst executed from PythonGeoffrey Blake
This patch adds the ability for the simulator to query the number of instructions a CPU has executed so far per hw-thread. This can be used to enable more flexible periodic events such as taking checkpoints starting 1s into simulation and X instructions thereafter.
2015-11-27base: Add support for changing output directoriesAndreas Sandberg
This changeset adds support for changing the simulator output directory. This can be useful when the simulation goes through several stages (e.g., a warming phase, a simulation phase, and a verification phase) since it allows the output from each stage to be located in a different directory. Relocation is done by calling core.setOutputDir() from Python or simout.setOutputDirectory() from C++. This change affects several parts of the design of the gem5's output subsystem. First, files returned by an OutputDirectory instance (e.g., simout) are of the type OutputStream instead of a std::ostream. This allows us to do some more book keeping and control re-opening of files when the output directory is changed. Second, new subdirectories are OutputDirectory instances, which should be used to create files in that sub-directory. Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se> [sascha.bischoff@arm.com: Rebased patches onto a newer gem5 version] Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com> Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
2016-02-06style: eliminate explicit boolean comparisonsSteve Reinhardt
Result of running 'hg m5style --skip-all --fix-control -a' to get rid of '== true' comparisons, plus trivial manual edits to get rid of '== false'/'== False' comparisons. Left a couple of explicit comparisons in where they didn't seem unreasonable: invalid boolean comparison in src/arch/mips/interrupts.cc:155 >> DPRINTF(Interrupt, "Interrupts OnCpuTimerINterrupt(tc) == true\n");<< invalid boolean comparison in src/unittest/unittest.hh:110 >> "EXPECT_FALSE(" #expr ")", (expr) == false)<<
2016-02-06style: fix missing spaces in control statementsSteve Reinhardt
Result of running 'hg m5style --skip-all --fix-control -a'.
2015-11-20cpu: Enforce 1 interrupt controller per threadAndreas Sandberg
Consider it a fatal configuration error if the number of interrupt controllers doesn't match the number of threads in an SMT configuration.
2015-09-30isa,cpu: Add support for FS SMT InterruptsMitch Hayenga
Adds per-thread interrupt controllers and thread/context logic so that interrupts properly get routed in SMT systems.
2015-09-30cpu: Add per-thread monitorsMitch Hayenga
Adds per-thread address monitors to support FullSystem SMT.
2015-09-30cpu: Change thread assignments for heterogenous SMTMitch Hayenga
Trying to run an SE system with varying threads per core (SMT cores + Non-SMT cores) caused failures due to the CPU id assignment logic. The comment about thread assignment (worrying about core 0 not having tid 0) seems not to be valid given that our configuration scripts initialize them in order. This removes that constraint so a heterogenously threaded sytem can work.
2015-08-21cpu: Move invldPid constant from Request to BaseCPUAndreas Hansson
A more natural home for this constant.
2015-07-07sim: Refactor the serialization base classAndreas Sandberg
Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2015-04-14config, cpu: fix progress interval for switched CPUsMalek Musleh
This patch ensures that the CPU progress Event is triggered for the new set of switched_cpus that get scheduled (e.g. during fast-forwarding). it also avoids printing the interval state if the cpu is currently switched out. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-01-10cpu: fix RetiredStores probe pointNikos Nikoleris
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-11-14arm: Fixes based on UBSan and static analysisAndreas Hansson
Another churn to clean up undefined behaviour, mostly ARM, but some parts also touching the generic part of the code base. Most of the fixes are simply ensuring that proper intialisation. One of the more subtle changes is the return type of the sign-extension, which is changed to uint64_t. This is to avoid shifting negative values (undefined behaviour) in the ISA code.
2014-11-06x86 isa: This patch attempts an implementation at mwait.Marc Orr
Mwait works as follows: 1. A cpu monitors an address of interest (monitor instruction) 2. A cpu calls mwait - this loads the cache line into that cpu's cache. 3. The cpu goes to sleep. 4. When another processor requests write permission for the line, it is evicted from the sleeping cpu's cache. This eviction is forwarded to the sleeping cpu, which then wakes up. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-10-16cpu: Probe points for basic PMU statsAndreas Sandberg
This changeset adds probe points that can be used to implement PMU counters for CPU stats. The following probes are supported: * BaseCPU::ppCycles / Cycles * BaseCPU::ppRetiredInsts / RetiredInsts * BaseCPU::ppRetiredLoads / RetiredLoads * BaseCPU::ppRetiredStores / RetiredStores * BaseCPU::ppRetiredBranches RetiredBranches
2014-05-09arch, arm: Preserve TLB bootUncacheability when switching CPUsGeoffrey Blake
The ARM TLBs have a bootUncacheability flag used to make some loads and stores become uncacheable when booting in FS mode. Later the flag is cleared to let those loads and stores operate as normal. When doing a takeOverFrom(), this flag's state is not preserved and is momentarily reset until the CPSR is touched. On single core runs this is a non-issue. On multi-core runs this can lead to crashes on the O3 CPU model from the following series of events: 1) takeOverFrom executed to switch from Atomic -> O3 2) All bootUncacheability flags are reset to true 3) Core2 tries to execute a load covered by bootUncacheability, it is flagged as uncacheable 4) Core2's load needs to replay due to a pipeline flush 3) Core1 core does an action on CPSR 4) The handling code for CPSR then checks all other cores to determine if bootUncacheability can be set to false 5) Asynchronously set bootUncacheability on all cores to false 6) Core2 replays load previously set as uncacheable and notices it is now flagged as cacheable, leads to a panic. This patch implements takeOverFrom() functionality for the ARM TLBs to preserve flag values when switching from atomic -> detailed.
2014-05-09cpu, arm: Allow the specification of a socket fieldAkash Bagdia
Allow the specification of a socket ID for every core that is reflected in the MPIDR field in ARM systems. This allows studying multi-socket / cluster systems with ARM CPUs.
2013-11-25sim: simulate with multiple threads and event queuesSteve Reinhardt ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E%2C%20Ali%20Saidi%20%3CAli.Saidi%40ARM.com%3E)
This patch adds support for simulating with multiple threads, each of which operates on an event queue. Each sim object specifies which eventq is would like to be on. A custom barrier implementation is being added using which eventqs synchronize. The patch was tested in two different configurations: 1. ruby_network_test.py: in this simulation L1 cache controllers receive requests from the cpu. The requests are replied to immediately without any communication taking place with any other level. 2. twosys-tsunami-simple-atomic: this configuration simulates a client-server system which are connected by an ethernet link. We still lack the ability to communicate using message buffers or ports. But other things like simulation start and end, synchronizing after every quantum are working. Committed by: Nilay Vaish
2013-07-18mem: Set the cache line size on a system levelAndreas Hansson
This patch removes the notion of a peer block size and instead sets the cache line size on the system level. Previously the size was set per cache, and communicated through the interconnect. There were plenty checks to ensure that everyone had the same size specified, and these checks are now removed. Another benefit that is not yet harnessed is that the cache line size is now known at construction time, rather than after the port binding. Hence, the block size can be locally stored and does not have to be queried every time it is used. A follow-on patch updates the configuration scripts accordingly.
2013-06-11cpu: Add support for scheduling multiple inst/load stop eventsAndreas Sandberg
Currently, the only way to get a CPU to stop after a fixed number of instructions/loads is to set a property on the CPU that causes a SimLoopExitEvent to be scheduled when the CPU is constructed. This is clearly not ideal in cases where the simulation script wants the CPU to stop at multiple instruction counts (e.g., SimPoint generation). This changeset adds the methods scheduleInstStop() and scheduleLoadStop() to the BaseCPU. These methods are exported to Python and are designed to be used from the simulation script. By using these methods instead of the old properties, a simulation script can schedule a stop at any point during simulation or schedule multiple stops. The number of instructions specified when scheduling a stop is relative to the current point of execution.
2013-04-22cpu: generate SimPoint basic block vector profilesDam Sunwoo
This patch is based on http://reviews.m5sim.org/r/1474/ originally written by Mitch Hayenga. Basic block vectors are generated (simpoint.bb.gz in simout folder) based on start and end addresses of basic blocks. Some comments to the original patch are addressed and hooks are added to create and resume from checkpoints based on instruction counts dictated by external SimPoint analysis tools. SimPoint creation/resuming options will be implemented as a separate patch.
2013-03-26cpu: Remove CpuPort and use MasterPort in the CPU classesAndreas Hansson
This patch changes the port in the CPU classes to use MasterPort instead of the derived CpuPort. The functions of the CpuPort are now distributed across the relevant subclasses. The port accessor functions (getInstPort and getDataPort) now return a MasterPort instead of a CpuPort. This simplifies creating derivative CPUs that do not use the CpuPort.
2013-02-15cpu: Refactor memory system checksAndreas Sandberg
CPUs need to test that the memory system is in the right mode in two places, when the CPU is initialized (unless it's switched out) and on a drainResume(). This led to some code duplication in the CPU models. This changeset introduces the verifyMemoryMode() method which is called by BaseCPU::init() if the CPU isn't switched out. The individual CPU models are responsible for calling this method when resuming from a drain as this code is CPU model specific.
2013-01-07cpu: Unify the serialization code for all of the CPU modelsAndreas Sandberg
Cleanup the serialization code for the simple CPUs and the O3 CPU. The CPU-specific code has been replaced with a (un)serializeThread that serializes the thread state / context of a specific thread. Assuming that the thread state class uses the CPU-specific thread state uses the base thread state serialization code, this allows us to restore a checkpoint with any of the CPU models.
2013-01-07cpu: Flush TLBs on switchOut()Andreas Sandberg
This changeset inserts a TLB flush in BaseCPU::switchOut to prevent stale translations when doing repeated switching. Additionally, the TLB flushing functionality is exported to the Python to make debugging of switching/checkpointing easier. A simulation script will typically use the TLB flushing functionality to generate a reference trace. The following sequence can be used to simulate a handover (this depends on how drain is implemented, but is generally the case) between identically configured CPU models: m5.drain(test_sys) [ cpu.flushTLBs() for cpu in test_sys.cpu ] m5.resume(test_sys) The generated trace should normally be identical to a trace generated when switching between identically configured CPU models or checkpointing and resuming.
2013-01-07cpu: Rename defer_registration->switched_outAndreas Sandberg
The defer_registration parameter is used to prevent a CPU from initializing at startup, leaving it in the "switched out" mode. The name of this parameter (and the help string) is confusing. This patch renames it to switched_out, which should be more descriptive.
2013-01-07cpu: Introduce sanity checks when switching between CPUsAndreas Sandberg
This patch introduces the following sanity checks when switching between CPUs: * Check that the set of new and old CPUs do not overlap. Having an overlap between the set of new CPUs and the set of old CPUs is currently not supported. Doing such a switch used to result in the following assertion error: BaseCPU::takeOverFrom(BaseCPU*): \ Assertion `!new_itb_port->isConnected()' failed. * Check that all new CPUs are in the switched out state. * Check that all old CPUs are in the switched in state.
2013-01-07arch: Make the ISA class inherit from SimObjectAndreas Sandberg
The ISA class on stores the contents of ID registers on many architectures. In order to make reset values of such registers configurable, we make the class inherit from SimObject, which allows us to use the normal generated parameter headers. This patch introduces a Python helper method, BaseCPU.createThreads(), which creates a set of ISAs for each of the threads in an SMT system. Although it is currently only needed when creating multi-threaded CPUs, it should always be called before instantiating the system as this is an obvious place to configure ID registers identifying a thread/CPU.
2012-11-02ARM: dump stats and process info on context switchesDam Sunwoo
This patch enables dumping statistics and Linux process information on context switch boundaries (__switch_to() calls) that are used for Streamline integration (a graphical statistics viewer from ARM).
2012-10-15Port: Add protocol-agnostic ports in the port hierarchyAndreas Hansson
This patch adds an additional level of ports in the inheritance hierarchy, separating out the protocol-specific and protocl-agnostic parts. All the functionality related to the binding of ports is now confined to use BaseMaster/BaseSlavePorts, and all the protocol-specific parts stay in the Master/SlavePort. In the future it will be possible to add other protocol-specific implementations. The functions used in the binding of ports, i.e. getMaster/SlavePort now use the base classes, and the index parameter is updated to use the PortID typedef with the symbolic InvalidPortID as the default.
2012-09-12Base CPU: Initialize profileEvent to NULLJoel Hestness
The profileEvent pointer is tested against NULL in various places, but it is not initialized unless running in full-system mode. In SE mode, this can result in segmentation faults when profileEvent default intializes to something other than NULL.
2012-08-28Clock: Rework clocks to avoid tick-to-cycle transformationsAndreas Hansson
This patch introduces the notion of a clock update function that aims to avoid costly divisions when turning the current tick into a cycle. Each clocked object advances a private (hidden) cycle member and a tick member and uses these to implement functions for getting the tick of the next cycle, or the tick of a cycle some time in the future. In the different modules using the clocks, changes are made to avoid counting in ticks only to later translate to cycles. There are a few oddities in how the O3 and inorder CPU count idle cycles, as seen by a few locations where a cycle is subtracted in the calculation. This is done such that the regression does not change any stats, but should be revisited in a future patch. Another, much needed, change that is not done as part of this patch is to introduce a new typedef uint64_t Cycle to be able to at least hint at the unit of the variables counting Ticks vs Cycles. This will be done as a follow-up patch. As an additional follow up, the thread context still uses ticks for the book keeping of last activate and last suspend and this should probably also be changed into cycles as well.
2012-08-28Port: Stricter port bind/unbind semanticsAndreas Hansson
This patch tightens up the semantics around port binding and checks that the ports that are being bound are currently not connected, and similarly connected before unbind is called. The patch consequently also changes the order of the unbind and bind for the switching of CPUs to ensure that the rules are adhered to. Previously the ports would be "over-written" without any check. There are no changes in behaviour due to this patch, and the only place where the unbind functionality is used is in the CPU.