summaryrefslogtreecommitdiff
path: root/src/cpu/base.hh
AgeCommit message (Collapse)Author
2017-12-22arch,cpu: "virtualize" the TLB interface.Gabe Black
CPUs have historically instantiated the architecture specific version of the TLBs to avoid a virtual function call, making them a little bit more dependent on what the current ISA is. Some simple performance measurement, the x86 twolf regression on the atomic CPU, shows that there isn't actually any performance benefit, and if anything the simulator goes slightly faster (although still within margin of error) when the TLB functions are virtual. This change switches everything outside of the architectures themselves to use the generic BaseTLB type, and then inside the ISA for them to cast that to their architecture specific type to call into architecture specific interfaces. The ARM TLB needed the most adjustment since it was using non-standard translation function signatures. Specifically, they all took an extra "type" parameter which defaulted to normal, and translateTiming returned a Fault. translateTiming actually doesn't need to return a Fault because everywhere that consumed it just stored it into a structure which it then deleted(?), and the fault is stored in the Translation object when the translation is done. A little more work is needed to fully obviate the arch/tlb.hh header, so the TheISA::TLB type is still visible outside of the ISAs. Specifically, the TlbEntry type is used in the generic PageTable which lives in src/mem. Change-Id: I51b68ee74411f9af778317eff222f9349d2ed575 Reviewed-on: https://gem5-review.googlesource.com/6921 Maintainer: Gabe Black <gabeblack@google.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2017-11-21cpu, cpu, sim: move Cycle probe updateJose Marinho
Move the code responsible for performing the actual probe point notify into BaseCPU. Use BaseCPU activateContext and suspendContext to keep track of sleep cycles. Create a probe point (ppActiveCycles) that does not count cycles where the processor was asleep. Rename ppCycles to ppAllCycles to reflect its nature. Change-Id: I1907ddd07d0ff9f2ef22cc9f61f5f46c630c9d66 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/5762 Maintainer: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2017-11-20cpu: Make automatic transition to OFF optionalJose Marinho
Add the power_gating_on_idle option to control whether a core automatically enters the power gated state. The default behaviour is to transition to clock gated when idle, but not to power gated. When this option is set to true, the core automatically transitions to the power gated state after a configurable latency. Change-Id: Ida98c7fc532de4140d0e511c25613769b47b3702 Reviewed-on: https://gem5-review.googlesource.com/5741 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2017-11-20pwr: Adds logic to enter power gating for the cpu modelAnouk Van Laer
If the CPU has been clock gated for a sufficient amount of time (configurable via pwrGatingLatency), the CPU will go into the OFF power state. This does not model hardware, just behaviour. Change-Id: Ib3681d1ffa6ad25eba60f47b4020325f63472d43 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/3969 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2017-07-12cpu: Refactor some Event subclasses to lambdasSean Wilson
Change-Id: If765c6100d67556f157e4e61aa33c2b7eeb8d2f0 Signed-off-by: Sean Wilson <spwilson2@wisc.edu> Reviewed-on: https://gem5-review.googlesource.com/3923 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Jason Lowe-Power <jason@lowepower.com>
2017-07-12cpu, sim: Add param to force CPUs to wait for GDBJose Marinho
By setting the BaseCPU parameter wait_for_dbg_connection, the GDB server blocks during initialisation waiting for the remote debugger to connect before starting the simulated CPU. Change-Id: I4d62c68ce9adf69344bccbb44f66e30b33715a1c [ Update info message to include remote GDB port, rename param. ] Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/3963 Reviewed-by: Gabe Black <gabeblack@google.com> Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
2015-07-20syscall_emul: [patch 13/22] add system call retry capabilityBrandon Potter
This changeset adds functionality that allows system calls to retry without affecting thread context state such as the program counter or register values for the associated thread context (when system calls return with a retry fault). This functionality is needed to solve problems with blocking system calls in multi-process or multi-threaded simulations where information is passed between processes/threads. Blocking system calls can cause deadlock because the simulator itself is single threaded. There is only a single thread servicing the event queue which can cause deadlock if the thread hits a blocking system call instruction. To illustrate the problem, consider two processes using the producer/consumer sharing model. The processes can use file descriptors and the read and write calls to pass information to one another. If the consumer calls the blocking read system call before the producer has produced anything, the call will block the event queue (while executing the system call instruction) and deadlock the simulation. The solution implemented in this changeset is to recognize that the system calls will block and then generate a special retry fault. The fault will be sent back up through the function call chain until it is exposed to the cpu model's pipeline where the fault becomes visible. The fault will trigger the cpu model to replay the instruction at a future tick where the call has a chance to succeed without actually going into a blocking state. In subsequent patches, we recognize that a syscall will block by calling a non-blocking poll (from inside the system call implementation) and checking for events. When events show up during the poll, it signifies that the call would not have blocked and the syscall is allowed to proceed (calling an underlying host system call if necessary). If no events are returned from the poll, we generate the fault and try the instruction for the thread context at a distant tick. Note that retrying every tick is not efficient. As an aside, the simulator has some multi-threading support for the event queue, but it is not used by default and needs work. Even if the event queue was completely multi-threaded, meaning that there is a hardware thread on the host servicing a single simulator thread contexts with a 1:1 mapping between them, it's still possible to run into deadlock due to the event queue barriers on quantum boundaries. The solution of replaying at a later tick is the simplest solution and solves the problem generally.
2016-06-06pwr: Low-power idle power state for idle CPUsDavid Guillen Fandos
Add functionality to the BaseCPU that will put the entire CPU into a low-power idle state whenever all threads in it are idle. Change-Id: I984d1656eb0a4863c87ceacd773d2d10de5cfd2b
2016-04-07mem: Remove threadId from memory request classMitch Hayenga
In general, the ThreadID parameter is unnecessary in the memory system as the ContextID is what is used for the purposes of locks/wakeups. Since we allocate sequential ContextIDs for each thread on MT-enabled CPUs, ThreadID is unnecessary as the CPUs can identify the requesting thread through sideband info (SenderState / LSQ entries) or ContextID offset from the base ContextID for a cpu. This is a re-spin of 20264eb after the revert (bd1c6789) and includes some fixes of that commit.
2016-04-06Revert power patch sets with unexpected interactionsAndreas Sandberg
The following patches had unexpected interactions with the current upstream code and have been reverted for now: e07fd01651f3: power: Add support for power models 831c7f2f9e39: power: Low-power idle power state for idle CPUs 4f749e00b667: power: Add power states to ClockedObject Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> --HG-- extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
2016-04-05mem: Remove threadId from memory request classMitch Hayenga
In general, the ThreadID parameter is unnecessary in the memory system as the ContextID is what is used for the purposes of locks/wakeups. Since we allocate sequential ContextIDs for each thread on MT-enabled CPUs, ThreadID is unnecessary as the CPUs can identify the requesting thread through sideband info (SenderState / LSQ entries) or ContextID offset from the base ContextID for a cpu.
2014-12-09power: Low-power idle power state for idle CPUsAkash Bagdia
Add functionality to the BaseCPU that will put the entire CPU into a low-power idle state whenever all threads in it are idle.
2016-04-05cpu: Query CPU for inst executed from PythonGeoffrey Blake
This patch adds the ability for the simulator to query the number of instructions a CPU has executed so far per hw-thread. This can be used to enable more flexible periodic events such as taking checkpoints starting 1s into simulation and X instructions thereafter.
2015-10-12misc: Add explicit overrides and fix other clang >= 3.5 issuesAndreas Hansson
This patch adds explicit overrides as this is now required when using "-Wall" with clang >= 3.5, the latter now part of the most recent XCode. The patch consequently removes "virtual" for those methods where "override" is added. The latter should be enough of an indication. As part of this patch, a few minor issues that clang >= 3.5 complains about are also resolved (unused methods and variables).
2015-10-12misc: Remove redundant compiler-specific definesAndreas Hansson
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap (and similar) abstractions, as these are no longer needed with gcc 4.7 and clang 3.1 as minimum compiler versions.
2015-09-30cpu,isa,mem: Add per-thread wakeup logicMitch Hayenga
Changes wakeup functionality so that only specific threads on SMT capable cpus are woken.
2015-09-30isa,cpu: Add support for FS SMT InterruptsMitch Hayenga
Adds per-thread interrupt controllers and thread/context logic so that interrupts properly get routed in SMT systems.
2015-09-30cpu: Add per-thread monitorsMitch Hayenga
Adds per-thread address monitors to support FullSystem SMT.
2015-08-21cpu: Move invldPid constant from Request to BaseCPUAndreas Hansson
A more natural home for this constant.
2015-07-07sim: Refactor the serialization base classAndreas Sandberg
Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2015-01-25cpu: remove legion tracerAli Saidi
If someone wants to debug with legion again they can restore the code from the repository, but no need to have it hang around indefinately.
2014-11-06x86 isa: This patch attempts an implementation at mwait.Marc Orr
Mwait works as follows: 1. A cpu monitors an address of interest (monitor instruction) 2. A cpu calls mwait - this loads the cache line into that cpu's cache. 3. The cpu goes to sleep. 4. When another processor requests write permission for the line, it is evicted from the sleeping cpu's cache. This eviction is forwarded to the sleeping cpu, which then wakes up. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-10-16cpu: Probe points for basic PMU statsAndreas Sandberg
This changeset adds probe points that can be used to implement PMU counters for CPU stats. The following probes are supported: * BaseCPU::ppCycles / Cycles * BaseCPU::ppRetiredInsts / RetiredInsts * BaseCPU::ppRetiredLoads / RetiredLoads * BaseCPU::ppRetiredStores / RetiredStores * BaseCPU::ppRetiredBranches RetiredBranches
2014-09-20cpu: Remove unused deallocateContext callsMitch Hayenga
The call paths for de-scheduling a thread are halt() and suspend(), from the thread context. There is no call to deallocateContext() in general, though some CPUs chose to define it. This patch removes the function from BaseCPU and the cores which do not require it.
2014-09-20alpha,arm,mips,power,x86,cpu,sim: Cleanup activate/deactivateMitch Hayenga
activate(), suspend(), and halt() used on thread contexts had an optional delay parameter. However this parameter was often ignored. Also, when used, the delay was seemily arbitrarily set to 0 or 1 cycle (no other delays were ever specified). This patch removes the delay parameter and 'Events' associated with them across all ISAs and cores. Unused activate logic is also removed.
2014-05-09cpu, arm: Allow the specification of a socket fieldAkash Bagdia
Allow the specification of a socket ID for every core that is reflected in the MPIDR field in ARM systems. This allows studying multi-socket / cluster systems with ARM CPUs.
2014-03-07cpu: Make CPU and ThreadContext getters constAndreas Hansson
This patch merely tidies up the CPU and ThreadContext getters by making them const where appropriate.
2014-01-24cpu: Add CPU support for generatig wake up events when LLSC adresses are ↵Ali Saidi
snooped. This patch add support for generating wake-up events in the CPU when an address that is currently in the exclusive state is hit by a snoop. This mechanism is required for ARMv8 multi-processor support.
2013-09-04arch: Resurrect the NOISA build target and rename it NULLAndreas Hansson
This patch makes it possible to once again build gem5 without any ISA. The main purpose is to enable work around the interconnect and memory system without having to build any CPU models or device models. The regress script is updated to include the NULL ISA target. Currently no regressions make use of it, but all the testers could (and perhaps should) transition to it. --HG-- rename : build_opts/NOISA => build_opts/NULL rename : src/arch/noisa/SConsopts => src/arch/null/SConsopts rename : src/arch/noisa/cpu_dummy.hh => src/arch/null/cpu_dummy.hh rename : src/cpu/intr_control.cc => src/cpu/intr_control_noisa.cc
2013-07-19cpu: Remove unused getBranchPred() method from BaseCPUAndreas Sandberg
Remove unused virtual getBranchPred() method from BaseCPU as it is not implemented by any of the CPU models. It used to always return NULL.
2013-07-18mem: Set the cache line size on a system levelAndreas Hansson
This patch removes the notion of a peer block size and instead sets the cache line size on the system level. Previously the size was set per cache, and communicated through the interconnect. There were plenty checks to ensure that everyone had the same size specified, and these checks are now removed. Another benefit that is not yet harnessed is that the cache line size is now known at construction time, rather than after the port binding. Hence, the block size can be locally stored and does not have to be queried every time it is used. A follow-on patch updates the configuration scripts accordingly.
2013-06-11cpu: Add support for scheduling multiple inst/load stop eventsAndreas Sandberg
Currently, the only way to get a CPU to stop after a fixed number of instructions/loads is to set a property on the CPU that causes a SimLoopExitEvent to be scheduled when the CPU is constructed. This is clearly not ideal in cases where the simulation script wants the CPU to stop at multiple instruction counts (e.g., SimPoint generation). This changeset adds the methods scheduleInstStop() and scheduleLoadStop() to the BaseCPU. These methods are exported to Python and are designed to be used from the simulation script. By using these methods instead of the old properties, a simulation script can schedule a stop at any point during simulation or schedule multiple stops. The number of instructions specified when scheduling a stop is relative to the current point of execution.
2013-04-22kvm: Avoid synchronizing the TC on every KVM exitAndreas Sandberg
Reduce the number of KVM->TC synchronizations by overloading the getContext() method and only request an update when the TC is requested as opposed to every time KVM returns to gem5.
2013-03-26cpu: Remove CpuPort and use MasterPort in the CPU classesAndreas Hansson
This patch changes the port in the CPU classes to use MasterPort instead of the derived CpuPort. The functions of the CpuPort are now distributed across the relevant subclasses. The port accessor functions (getInstPort and getDataPort) now return a MasterPort instead of a CpuPort. This simplifies creating derivative CPUs that do not use the CpuPort.
2013-02-15cpu: Refactor memory system checksAndreas Sandberg
CPUs need to test that the memory system is in the right mode in two places, when the CPU is initialized (unless it's switched out) and on a drainResume(). This led to some code duplication in the CPU models. This changeset introduces the verifyMemoryMode() method which is called by BaseCPU::init() if the CPU isn't switched out. The individual CPU models are responsible for calling this method when resuming from a drain as this code is CPU model specific.
2013-01-07cpu: Unify the serialization code for all of the CPU modelsAndreas Sandberg
Cleanup the serialization code for the simple CPUs and the O3 CPU. The CPU-specific code has been replaced with a (un)serializeThread that serializes the thread state / context of a specific thread. Assuming that the thread state class uses the CPU-specific thread state uses the base thread state serialization code, this allows us to restore a checkpoint with any of the CPU models.
2013-01-07cpu: Flush TLBs on switchOut()Andreas Sandberg
This changeset inserts a TLB flush in BaseCPU::switchOut to prevent stale translations when doing repeated switching. Additionally, the TLB flushing functionality is exported to the Python to make debugging of switching/checkpointing easier. A simulation script will typically use the TLB flushing functionality to generate a reference trace. The following sequence can be used to simulate a handover (this depends on how drain is implemented, but is generally the case) between identically configured CPU models: m5.drain(test_sys) [ cpu.flushTLBs() for cpu in test_sys.cpu ] m5.resume(test_sys) The generated trace should normally be identical to a trace generated when switching between identically configured CPU models or checkpointing and resuming.
2013-01-07cpu: Introduce sanity checks when switching between CPUsAndreas Sandberg
This patch introduces the following sanity checks when switching between CPUs: * Check that the set of new and old CPUs do not overlap. Having an overlap between the set of new CPUs and the set of old CPUs is currently not supported. Doing such a switch used to result in the following assertion error: BaseCPU::takeOverFrom(BaseCPU*): \ Assertion `!new_itb_port->isConnected()' failed. * Check that all new CPUs are in the switched out state. * Check that all old CPUs are in the switched in state.
2012-11-02ARM: dump stats and process info on context switchesDam Sunwoo
This patch enables dumping statistics and Linux process information on context switch boundaries (__switch_to() calls) that are used for Streamline integration (a graphical statistics viewer from ARM).
2012-10-15Port: Add protocol-agnostic ports in the port hierarchyAndreas Hansson
This patch adds an additional level of ports in the inheritance hierarchy, separating out the protocol-specific and protocl-agnostic parts. All the functionality related to the binding of ports is now confined to use BaseMaster/BaseSlavePorts, and all the protocol-specific parts stay in the Master/SlavePort. In the future it will be possible to add other protocol-specific implementations. The functions used in the binding of ports, i.e. getMaster/SlavePort now use the base classes, and the index parameter is updated to use the PortID typedef with the symbolic InvalidPortID as the default.
2012-09-25sim: Move CPU-specific methods from SimObject to the BaseCPU classAndreas Sandberg
2012-08-28Clock: Add a Cycles wrapper class and use where applicableAndreas Hansson
This patch addresses the comments and feedback on the preceding patch that reworks the clocks and now more clearly shows where cycles (relative cycle counts) are used to express time. Instead of bumping the existing patch I chose to make this a separate patch, merely to try and focus the discussion around a smaller set of changes. The two patches will be pushed together though. This changes done as part of this patch are mostly following directly from the introduction of the wrapper class, and change enough code to make things compile and run again. There are definitely more places where int/uint/Tick is still used to represent cycles, and it will take some time to chase them all down. Similarly, a lot of parameters should be changed from Param.Tick and Param.Unsigned to Param.Cycles. In addition, the use of curTick is questionable as there should not be an absolute cycle. Potential solutions can be built on top of this patch. There is a similar situation in the o3 CPU where lastRunningCycle is currently counting in Cycles, and is still an absolute time. More discussion to be had in other words. An additional change that would be appropriate in the future is to perform a similar wrapping of Tick and probably also introduce a Ticks class along with suitable operators for all these classes.
2012-08-21Clock: Move the clock and related functions to ClockedObjectAndreas Hansson
This patch moves the clock of the CPU, bus, and numerous devices to the new class ClockedObject, that sits in between the SimObject and MemObject in the class hierarchy. Although there are currently a fair amount of MemObjects that do not make use of the clock, they potentially should do so, e.g. the caches should at some point have the same clock as the CPU, potentially with a 1:n ratio. This patch does not introduce any new clock objects or object hierarchies (clusters, clock domains etc), but is still a step in the direction of having a more structured approach clock domains. The most contentious part of this patch is the serialisation of clocks that some of the modules (but not all) did previously. This serialisation should not be needed as the clock is set through the parameters even when restoring from the checkpoint. In other words, the state is "stored" in the Python code that creates the modules. The nextCycle methods are also simplified and the clock phase parameter of the CPU is removed (this could be part of a clock object once they are introduced).
2012-05-26CPU: Merge the predecoder and decoder.Gabe Black
These classes are always used together, and merging them will give the ISAs more flexibility in how they cache things and manage the process. --HG-- rename : src/arch/x86/predecoder_tables.cc => src/arch/x86/decoder_tables.cc
2012-05-01MEM: Separate requests and responses for timing accessesAndreas Hansson
This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-04-14MEM: Separate snoops and normal memory requests/responsesAndreas Hansson
This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-04-03Atomic: Remove the physmem_port and access memory directlyAndreas Hansson
This patch removes the physmem_port from the Atomic CPU and instead uses the system pointer to access the physmem when using the fastmem option. The system already keeps track of the physmem and the valid memory address ranges, and with this patch we merely make use of that existing functionality. As a result of this change, the overloaded getMasterPort in the Atomic CPU can be removed, thus unifying the CPUs.
2012-03-30MEM: Introduce the master/slave port sub-classes in C++William Wang
This patch introduces the notion of a master and slave port in the C++ code, thus bringing the previous classification from the Python classes into the corresponding simulation objects and memory objects. The patch enables us to classify behaviours into the two bins and add assumptions and enfore compliance, also simplifying the two interfaces. As a starting point, isSnooping is confined to a master port, and getAddrRanges to slave ports. More of these specilisations are to come in later patches. The getPort function is not getMasterPort and getSlavePort, and returns a port reference rather than a pointer as NULL would never be a valid return value. The default implementation of these two functions is placed in MemObject, and calls fatal. The one drawback with this specific patch is that it requires some code duplication, e.g. QueuedPort becomes QueuedMasterPort and QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort (avoiding multiple inheritance). With the later introduction of the port interfaces, moving the functionality outside the port itself, a lot of the duplicated code will disappear again.
2012-03-19clang: Fix recently introduced clang compilation errorsAndreas Hansson
This patch makes the code compile with clang 2.9 and 3.0 again by making two very minor changes. Firt, it maintains a strict typing in the forward declaration of the BaseCPUParams. Second, it adds a FullSystemInt flag of the type unsigned int next to the boolean FullSystem flag. The FullSystemInt variable can be used in decode-statements (expands to switch statements) in the instruction decoder.
2012-03-02CPU: Check that the interrupt controller is created when neededAndreas Hansson
This patch adds a creation-time check to the CPU to ensure that the interrupt controller is created for the cases where it is needed, i.e. if the CPU is not being switched in later and not a checker CPU. The patch also adds the "createInterruptController" call to a number of the regression scripts.