Age | Commit message (Collapse) | Author |
|
Change-Id: I2206559c6c2a6e6a0452e9c7d9964792afa9f358
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/23282
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Those are already present in writeMem; looking for consistency
Change-Id: Ib85e0db228bc73e3ac64155d1290444cf6864a8c
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/23281
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Reviewed-by: Bobby R. Bruce <bbruce@ucdavis.edu>
Tested-by: kokoro <noreply+kokoro@google.com>
Maintainer: Bobby R. Bruce <bbruce@ucdavis.edu>
|
|
This change is based on modify the way we move the AtomicOpFunctor*
through gem5 in order to mantain proper ownership of the object and
ensuring its destruction when it is no longer used.
Doing that we fix at the same time a memory leak in Request.hh
where we were assigning a new AtomicOpFunctor* without destroying the
previous one.
This change creates a new type AtomicOpFunctor_ptr as a
std::unique_ptr<AtomicOpFunctor> and move its ownership as needed. Except
for its only usage when AtomicOpFunc() is called.
Change-Id: Ic516f9d8217cb1ae1f0a19500e5da0336da9fd4f
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20919
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
A memory request size can be larger than 255 bytes (e.g.
SVE with 2048-bit vector length) which could cause overflow
in the 'uint8_t effSize' variable.
Change-Id: I77e0d02a49ea7f81cacfa5be7e4ae40434af3109
Reviewed-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/19175
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This patch adds support for pinning registers for a certain number of
consecutive writes. This is only relevant for timing CPU models
(functional-only models are unaffected), and it is primarily needed to
provide a realistic execution model for micro-coded operations whose
microops can write to non-overlapping portions of a destination
register, e.g. vector gather loads. In those cases, this mechanism
can disable renaming for a sequence of consecutive writes, thus making
the resulting execution more efficient: allocating a new physical
register for each microop would introduce a read-modify-write chain of
dependencies, while with these modifications the microops can write
back in parallel.
Please note that this new feature is only leveraged by O3CPU for the
time being.
Additional authors:
- Gabor Dozsa <gabor.dozsa@arm.com>
Change-Id: I07eb5fdbd1fa0b748c9bdc1174d9f330fda34f81
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/13520
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This changeset adds support for partial (or masked) loads/stores, i.e.
loads/stores that can disable accesses to individual bytes within the
target address range. In addition, this changeset extends the code to
crack memory accesses across most CPU models (TimingSimpleCPU still
TBD), so that arbitrarily wide memory accesses are supported. These
changes are required for supporting ISAs with wide vectors.
Additional authors:
- Gabor Dozsa <gabor.dozsa@arm.com>
- Tiago Muck <tiago.muck@arm.com>
Change-Id: Ibad33541c258ad72925c0b1d5abc3e5e8bf92d92
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/13518
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
This changeset introduces a new predicate to guard memory accesses.
The most immediate use for this is to allow proper handling of
predicated-false vector contiguous loads and predicated-false
micro-ops of vector gather loads (added in separate changesets).
Change-Id: Ice6894fe150faec2f2f7ab796a00c99ac843810a
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/17991
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Bradley Wang <radwang@ucdavis.edu>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
The implementation of the PhyRegId class is shared between multiple
cpu models. The o3/misc.hh should only be included in o3 models.
This patch removes the dependencies between different model
implementations, allowing to add new O3-like CPU model.
Change-Id: Ibb812517043befe75c48fab3ce9605a0d272870b
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/16908
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Bradley Wang <radwang@ucdavis.edu>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This patch enables all 4 CPU models (AtomicSimpleCPU, TimingSimpleCPU,
MinorCPU and DerivO3CPU) to issue atomic memory (AMO) requests to memory
system.
Atomic memory instruction is treated as a special store instruction in
all CPU models.
In simple CPUs, an AMO request with an associated AtomicOpFunctor is
simply sent to L1 dcache.
In MinorCPU, an AMO request bypasses store buffer and waits for any
conflicting store request(s) currently in the store buffer to retire
before the AMO request is sent to the cache. AMO requests are not buffered
in the store buffer, so their effects appear immediately in the cache.
In DerivO3CPU, an AMO request is inserted in the store buffer so that it
is delivered to the cache only after all previous stores are issued to
the cache. Data forwarding between between an outstanding AMO in the
store buffer and a subsequent load is not allowed since the AMO request
does not hold valid data until it's executed in the cache.
This implementation assumes that a target ISA implementation must insert
enough memory fences as micro-ops around an atomic instruction to
enforce a correct order of memory instructions with respect to its
memory consistency model. Without extra memory fences, this implementation
can allow AMOs and other memory instructions that do not conflict
(i.e., not target the same address) to reorder.
This implementation also assumes that atomic instructions execute within
a cache line boundary since the cache for now is not able to execute an
operation on two different cache lines in one single step. Therefore,
ISAs like x86 that require multi-cache-line atomic instructions need to
either use a pair of locking load and unlocking store or change the
cache implementation to guarantee the atomicity of an atomic
instruction.
Change-Id: Ib8a7c81868ac05b98d73afc7d16eb88486f8cf9a
Reviewed-on: https://gem5-review.googlesource.com/c/8188
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Most architectures weren't using the CCReg type, and in x86 and arm
it was already a uint64_t.
Change-Id: I0b3d5e690e6b31db6f2627f449c89bde0f6750a6
Reviewed-on: https://gem5-review.googlesource.com/c/14515
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Latest-gen. vector/SIMD extensions, including the Arm Scalable Vector
Extension (SVE), introduce the notion of a predicate register file.
This changeset adds this feature across architectures and CPU models.
Change-Id: Iebcadbad89c0a582ff8b1b70de353305db603946
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13715
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
This patch does a large modification of the LSQ in the O3 model. The
main goal of the patch is to remove the 'an operation can be served with
one or two memory requests' assumption that is present in the LSQ
and the instruction with the req, reqLow, reqHigh triplet, and
generalising it to operations that can be addressed with one request,
and operations that require many requests, embodied in the
SingleDataRequest and the SplitDataRequest.
This modification has been done mimicking the minor model to an extent,
shifting the responsibilities of dealing with VtoP translation and
tracking the status and resources from the DynInst to the LSQ via the
LSQRequest. The LSQRequest models the information concerning the
operation, handles the creation of fragments for translation and request
as well as assembling/splitting the data accordingly.
With this modifications, the implementation of vector ISAs, particularly
on the memory side, become more rich, as the new model permits a
dissociation of the ISA characteristics as vector length, from the
microarchitectural characteristics that govern how contiguous loads are
executing, allowing exploration of different LSQ to DL1 bus widths to
understand the tradeoffs in complexity and performance.
Part of the complexities introduced stem from the fact that gem5 keeps a
large amount of metadata regarding, in particular, memory operations,
thus, when an instruction is squashed while some operation as TLB lookup
or cache access is ongoing, when the relevant structure communicates to
the LSQ that the operation is over, it tries to access some pieces of
data that should have died when the instruction is squashed, leading to
asserts, panics, or memory corruption. To ensure the correct behaviour,
the LSQRequest rely on assesing who is their owner, and self-destroying
if they detect their owner is done with the request, and there will be
no subsequent action. For example, in the case of an instruction
squashed whal the TLB is doing a walk to serve the translation, when the
translation is served by the TLB, the LSQRequest detects that the
instruction was squashed, and as the translation is done, no one else
expect to access its information, and therefore, it self-destructs.
Having destroyed the LSQRequest earlier, would lead to wrong behaviour
as the TLB walk may access some fields of it.
Additional authors:
- Gabor Dozsa <gabor.dozsa@arm.com>
Change-Id: I9578a1a3f6b899c390cdd886856a24db68ff7d0c
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13516
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
|
|
These types are IntReg, FloatReg, FloatRegBits, and MiscReg. There are
some remaining types, specifically the vector registers and the CCReg.
I'm less familiar with these new types of registers, and so will look
at getting rid of them at some later time.
Change-Id: Ide8f76b15c531286f61427330053b44074b8ac9b
Reviewed-on: https://gem5-review.googlesource.com/c/13624
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Use the binary accessors instead.
Change-Id: Iff1877e92c79df02b3d13635391a8c2f025776a2
Reviewed-on: https://gem5-review.googlesource.com/c/14457
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Summary: Usage of const DynInstPtr& when possible and introduction of
move operators to RefCountingPtr.
In many places, scoped references to dynamic instructions do a copy of
the DynInstPtr when a reference would do. This is detrimental to
performance. On top of that, in case there is a need for reference
tracking for debugging, the redundant copies make the process much more
painful than it already is.
Also, from the theoretical point of view, a function/method that
defines a convenience name to access an instruction should not be
considered an owner of the data, i.e., doing a copy and not a reference
is not justified.
On a related topic, C++11 introduces move semantics, and those are
useful when, for example, there is a class modelling a HW structure that
contains a list, and has a getHeadOfList function, to prevent doing a
copy to an internal variable -> update pointer, remove from the list ->
update pointer, return value making a copy to the assined variable ->
update pointer, destroy the returned value -> update pointer.
Change-Id: I3bb46c20ef23b6873b469fd22befb251ac44d2f6
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13105
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
This patch adds a new flag named 'Atomic' to support ISA implementations
that use AtomicOpFunctor to handle atomic instructions instead of a
pair of locking load and unlocking store.
Change-Id: I1fbee6e54432396cb49dfc59ad9006b75812d115
Reviewed-on: https://gem5-review.googlesource.com/8187
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
|
|
This patch is changing the underlying type for RequestPtr from Request*
to shared_ptr<Request>. Having memory requests being managed by smart
pointers will simplify the code; it will also prevent memory leakage and
dangling pointers.
Change-Id: I7749af38a11ac8eb4d53d8df1252951e0890fde3
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/10996
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Every usage of Request* in the code has been replaced with the
RequestPtr alias. This is a preparing patch for when RequestPtr will be
the typdefed to a smart pointer to Request rather then a raw pointer to
Request.
Change-Id: I73cbaf2d96ea9313a590cdc731a25662950cd51a
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/10995
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
|
|
This flag means that the instruction isn't an actual instruction, it's
just a placeholder to carry a fault down a pipeline, for instance.
Change-Id: I1cc12b068662dbd3d3b089c9941a07b6e88b57e3
Reviewed-on: https://gem5-review.googlesource.com/7123
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Get rid of some remnants of a system which was intended to separate
address computation into its own instruction object.
Change-Id: I23f9ffd70fcb89a8ea5bbb934507fb00da9a0b7f
Reviewed-on: https://gem5-review.googlesource.com/7122
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Reiley's update :) of the isa parser definitions. My addition of the
vector element operand concept for the ISA parser. Nathanael's modification
creating a hierarchy between vector registers and its constituencies to the
isa parser.
Some fixes/updates on top to consider instructions as vectors instead of
floating when they use the VectorRF. Some counters added to all the
models to keep faithful counts.
Change-Id: Id8f162a525240dfd7ba884c5a4d9fa69f4050101
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2706
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This patch adds some more functionality to the cpu model and the arch to
interface with the vector register file.
This change consists mainly of augmenting ThreadContexts and ExecContexts
with calls to get/set full vectors, underlying microarchitectural elements
or lanes. Those are meant to interface with the vector register file. All
classes that implement this interface also get an appropriate implementation.
This requires implementing the vector register file for the different
models using the VecRegContainer class.
This change set also updates the Result abstraction to contemplate the
possibility of having a vector as result.
The changes also affect how the remote_gdb connection works.
There are some (nasty) side effects, such as the need to define dummy
numPhysVecRegs parameter values for architectures that do not implement
vector extensions.
Nathanael Premillieu's work with an increasing number of fixes and
improvements of mine.
Change-Id: Iee65f4e8b03abfe1e94e6940a51b68d0977fd5bb
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues and CC reg free list initialisation ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2705
|
|
The Result union used to collect the result of an instruction is now a
class of its own, with its constructor, and explicit casting methods for
cleanliness.
This is also a stepping stone to have vector registers, and instructions
that produce a vector register as output.
Change-Id: I6f40c11cb5e835d8b11f7804a4e967aff18025b9
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2703
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
With the hierarchical RegId there are a lot of functions that are
redundant now.
The idea behind the simplification is that instead of having the regId,
telling which kind of register read/write/rename/lookup/etc. and then
the function panic_if'ing if the regId is not of the appropriate type,
we provide an interface that decides what kind of register to read
depending on the register type of the given regId.
Change-Id: I7d52e9e21fc01205ae365d86921a4ceb67a57178
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2702
|
|
Mimic the changes done on the architectural register indexes on the
physical register indexes. This is specific to the O3 model. The
structure, called PhysRegId, contains a register class, a register
index and a flat register index. The flat register index is kept
because it is useful in some cases where the type of register is not
important (dependency graph and scoreboard for example). Instead
of directly using the structure, most of the code is working with
a const PhysRegId* (typedef to PhysRegIdPtr). The actual PhysRegId
objects are stored in the regFile.
Change-Id: Ic879a3cc608aa2f34e2168280faac1846de77667
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2701
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Replace the unified register mapping with a structure associating
a class and an index. It is now much easier to know which class of
register the index is referring to. Also, when adding a new class
there is no need to modify existing ones.
Change-Id: I55b3ac80763702aa2cd3ed2cbff0a75ef7620373
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2700
|
|
Change-Id: I183b9942929c873c3272ce6d1abd4ebc472c7132
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
In general, the ThreadID parameter is unnecessary in the memory system
as the ContextID is what is used for the purposes of locks/wakeups.
Since we allocate sequential ContextIDs for each thread on MT-enabled
CPUs, ThreadID is unnecessary as the CPUs can identify the requesting
thread through sideband info (SenderState / LSQ entries) or ContextID
offset from the base ContextID for a cpu.
This is a re-spin of 20264eb after the revert (bd1c6789) and includes
some fixes of that commit.
|
|
The following patches had unexpected interactions with the current
upstream code and have been reverted for now:
e07fd01651f3: power: Add support for power models
831c7f2f9e39: power: Low-power idle power state for idle CPUs
4f749e00b667: power: Add power states to ClockedObject
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
--HG--
extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
|
|
In general, the ThreadID parameter is unnecessary in the memory system
as the ContextID is what is used for the purposes of locks/wakeups.
Since we allocate sequential ContextIDs for each thread on MT-enabled
CPUs, ThreadID is unnecessary as the CPUs can identify the requesting
thread through sideband info (SenderState / LSQ entries) or ContextID
offset from the base ContextID for a cpu.
|
|
For historical reasons, the ExecContext interface had a single
function, readMem(), that did two different things depending on
whether the ExecContext supported atomic memory mode (i.e.,
AtomicSimpleCPU) or timing memory mode (all the other models).
In the former case, it actually performed a memory read; in the
latter case, it merely initiated a read access, and the read
completion did not happen until later when a response packet
arrived from the memory system.
This led to some confusing things, including timing accesses
being required to provide a pointer for the return data even
though that pointer was only used in atomic mode.
This patch splits this interface, adding a new initiateMemRead()
function to the ExecContext interface to replace the timing-mode
use of readMem().
For consistency and clarity, the readMemTiming() helper function
in the ISA definitions is renamed to initiateMemRead() as well.
For x86, where the access size is passed in explicitly, we can
also get rid of the data parameter at this level. For other ISAs,
where the access size is determined from the type of the data
parameter, we have to keep the parameter for that purpose.
|
|
The read() function merely initiates a memory read operation; the
data doesn't arrive until the access completes and a response packet
is received from the memory system. Thus there's no need to provide
a data pointer; its existence is historical.
Getting this pointer out of this internal o3 interface sets the
stage for similar cleanup in the ExecContext interface. Also
found that we were pointlessly setting the contents at this pointer
on a store forward (the useful memcpy happens just a few lines
below the deleted one).
|
|
Make best use of the compiler, and enable -Wextra as well as
-Wall. There are a few issues that had to be resolved, but they are
all trivial.
|
|
Adds per-thread address monitors to support FullSystem SMT.
|
|
This patch enables instructions in LSQ to track two physical addresses for
corresponding two split requests. Later, the information is used in
checksnoop() to search for/invalidate the corresponding LD instructions.
The current implementation has kept track of only the physical address that is
referenced by the first split request. Thus, for checksnoop(), the line
accessed by the second request has not been considered, causing potential
correctness issues.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Context IDs used to be declared as ad hoc (usually as int). This
changeset introduces a typedef for ContextIDs and a constant for
invalid context IDs.
|
|
|
|
This adds a vector register type. The type is defined as a std::array of a
fixed number of uint64_ts. The isa_parser.py has been modified to parse vector
register operands and generate the required code. Different cpus have vector
register files now.
|
|
Three minor issues are resolved:
1. Apparently gcc 5.1 does not like negation of booleans followed by
bitwise AND.
2. Somehow the compiler also gets confused and warns about
NoopMachInst being unused (removing it causes compilation errors
though). Most likely a compiler bug.
3. There seems to be a number of instances where loop unrolling causes
false positives for the array-bounds check. For now, switch to
std::array. Potentially we could disable the warning for newer gcc
versions, but switching to std::array is probably a good move in
any case.
|
|
The Request::UNCACHEABLE flag currently has two different
functions. The first, and obvious, function is to prevent the memory
system from caching data in the request. The second function is to
prevent reordering and speculation in CPU models.
This changeset gives the order/speculation requirement a separate flag
(Request::STRICT_ORDER). This flag prevents CPU models from doing the
following optimizations:
* Speculation: CPU models are not allowed to issue speculative
loads.
* Write combining: CPU models and caches are not allowed to merge
writes to the same cache line.
Note: The memory system may still reorder accesses unless the
UNCACHEABLE flag is set. It is therefore expected that the
STRICT_ORDER flag is combined with the UNCACHEABLE flag to prevent
this behavior.
|
|
Now, prior to the renaming, the instruction requests the exact amount of
registers it will need, and the rename_map decides whether the instruction is
allowed to proceed or not.
|
|
The TLB-related code is generally architecture dependent and should
live in the arch directory to signify that.
--HG--
rename : src/sim/BaseTLB.py => src/arch/generic/BaseTLB.py
rename : src/sim/tlb.cc => src/arch/generic/tlb.cc
rename : src/sim/tlb.hh => src/arch/generic/tlb.hh
|
|
Track memory size and flags as well as add some comments and consts.
|
|
Mwait works as follows:
1. A cpu monitors an address of interest (monitor instruction)
2. A cpu calls mwait - this loads the cache line into that cpu's cache.
3. The cpu goes to sleep.
4. When another processor requests write permission for the line, it is
evicted from the sleeping cpu's cache. This eviction is forwarded to the
sleeping cpu, which then wakes up.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch takes quite a large step in transitioning from the ad-hoc
RefCountingPtr to the c++11 shared_ptr by adopting its use for all
Faults. There are no changes in behaviour, and the code modifications
are mostly just replacing "new" with "make_shared".
|
|
This patch optimises the passing of StaticInstPtr by avoiding copying
the reference-counting pointer. This avoids first incrementing and
then decrementing the reference-counting pointer.
|
|
We currently generate and compile one version of the ISA code per CPU
model. This is obviously wasting a lot of resources at compile
time. This changeset factors out the interface into a separate
ExecContext class, which also serves as documentation for the
interface between CPUs and the ISA code. While doing so, this
changeset also fixes up interface inconsistencies between the
different CPU models.
The main argument for using one set of ISA code per CPU model has
always been performance as this avoid indirect branches in the
generated code. However, this argument does not hold water. Booting
Linux on a simulated ARM system running in atomic mode
(opt/10.linux-boot/realview-simple-atomic) is actually 2% faster
(compiled using clang 3.4) after applying this patch. Additionally,
compilation time is decreased by 35%.
|
|
Allow the specification of a socket ID for every core that is reflected in the
MPIDR field in ARM systems. This allows studying multi-socket / cluster
systems with ARM CPUs.
|
|
This patch merely tidies up the CPU and ThreadContext getters by
making them const where appropriate.
|
|
snooped.
This patch add support for generating wake-up events in the CPU when an address
that is currently in the exclusive state is hit by a snoop. This mechanism is required
for ARMv8 multi-processor support.
|