Age | Commit message (Collapse) | Author |
|
Change-Id: I2206559c6c2a6e6a0452e9c7d9964792afa9f358
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/23282
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Those are already present in writeMem; looking for consistency
Change-Id: Ib85e0db228bc73e3ac64155d1290444cf6864a8c
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/23281
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Reviewed-by: Bobby R. Bruce <bbruce@ucdavis.edu>
Tested-by: kokoro <noreply+kokoro@google.com>
Maintainer: Bobby R. Bruce <bbruce@ucdavis.edu>
|
|
The logic that determines which syscall to call was built into the
implementation of faults/exceptions or even into the instruction
decoder, but that logic can depend on what OS is being used, and
sometimes even what version, for example 32bit vs. 64bit.
This change pushes that logic up into the Process objects since those
already handle a lot of the aspects of emulating the guest OS. Instead,
the ISA or fault implementations just notify the rest of the system
that a nebulous syscall has happened, and that gets propogated upward
until the process does something with it. That's very analogous to how
a system call would work on a real machine.
When a system call happens, the low level component which detects that
should call tc->syscall(&fault), where tc is the relevant thread (or
execution) context, and fault is a Fault which can ultimately be set
by the system call implementation.
The TC implementor (probably a CPU) will then have a chance to do
whatever it needs to to handle a system call. Currently only O3 does
anything special here. That implementor will end up calling the
Process's syscall() method.
Once in Process::syscall, the process object will use it's contextual
knowledge to determine what system call is being requested. It then
calls Process::doSyscall with the right syscall number, where doSyscall
centralizes the common mechanism for actually retrieving and calling
into the system call implementation.
Jira Issue: https://gem5.atlassian.net/browse/GEM5-187
Change-Id: I937ec1ef0576142c2a182ff33ca508d77ad0e7a1
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/23176
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
|
|
An earlier change accidentally left out the actualTC-> prefix in the
getCurrentInstCount method which was supposed to delegate the call to
another thread context. Without that, it just called itself and would
infinitely recurse.
This bug was pointed out in email by Robert Henry.
Change-Id: Ibf1fee6b48ff87790309c6d435bd76fa95c6cab9
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22623
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
It doesn't matter if the bytes are converted before or after they're
fed into the decoder. The ISA already knows what endianness to use
implicitly, and this frees the CPU which doesn't from having to worry
about it.
Change-Id: Id6574ee81bbf4f032c1d7b2901a664f2bd014fbc
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22343
Maintainer: Gabe Black <gabeblack@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This was only used by the KVM CPU, and it has access to all it needs to
figure out that value locally without requiring all the ThreadContexts
to implement an equivalent function.
Change-Id: I17a14ce669db2519edf129db761ebd8dc3bd4129
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22114
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This was useful when transitioning away from the CPU based
comInstEventQueue, but now that objects backing the ThreadContexts have
access to the underlying comInstEventQueue and can manipulate it
directly, they don't need to do so through a generic interface.
Getting rid of this function narrows and simplifies the interface.
Change-Id: I202d466d266551675ef6792d38c658d8a8f1cb8b
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22113
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This switches to letting the ThreadContexts use a thread based/local
comInstEventQueue instead of falling back to the CPU's array. Because
the implementation is no longer shared and it's not given where the
comInstEventQueue (or other implementation) should be accessed, the
default implementation has been removed.
Also, because nobody is using the CPU's array of event queues, those
have been removed.
Change-Id: I515e6e00a2174067a928c33ef832bc5c840bdf7f
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22110
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
The System keeps track of what events are live so new ThreadContexts
can have the same set of events as the other ThreadContexts.
Change-Id: Id22bfa0af7592a43d97be1564ca067b08ac1de7c
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22106
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
Both the thread and system's PCEventQueue are checked when appropriate.
Change-Id: I16c371339c91a37b5641860d974e546a30e23e13
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22105
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This prevents having to access it from within the ThreadContext.
Change-Id: I34f5815a11201b8fc41871c18bdbbcd0f40305cf
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22102
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This change is based on modify the way we move the AtomicOpFunctor*
through gem5 in order to mantain proper ownership of the object and
ensuring its destruction when it is no longer used.
Doing that we fix at the same time a memory leak in Request.hh
where we were assigning a new AtomicOpFunctor* without destroying the
previous one.
This change creates a new type AtomicOpFunctor_ptr as a
std::unique_ptr<AtomicOpFunctor> and move its ownership as needed. Except
for its only usage when AtomicOpFunc() is called.
Change-Id: Ic516f9d8217cb1ae1f0a19500e5da0336da9fd4f
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20919
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
No caller uses any of the MasterPort specific properties of these
function's return values, so we can instead return a reference to the
base Port class. This makes it possible for the data and inst ports
to be of any port type, not just gem5 style MasterPorts. This makes
life simpler for, for example, systemc based CPUs which might have TLM
ports.
It also makes it possible for any two CPUs which have compatible ports
to be switched between, as long as the ports they use support being
unbound. Unfortunately that does not include TLM or systemc ports which
are bound permanently.
Change-Id: I98fce5a16d2ef1af051238e929dd96d57a4ac838
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20240
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
These two functions were performing the same function but had two
different names for historical reasons. This change merges them
together, keeping the getVirtProxy name to be consistent with the
getPhysProxy method used to get a non-translating proxy port.
Change-Id: Idd83c6b899f9343795075b030ccbc723a79e52a4
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18581
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This is a step towards merging the accessors for SE and FS modes.
Change-Id: I76818ab88b97097ac363e243be9cc1911b283090
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18579
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This changeset adds support for partial (or masked) loads/stores, i.e.
loads/stores that can disable accesses to individual bytes within the
target address range. In addition, this changeset extends the code to
crack memory accesses across most CPU models (TimingSimpleCPU still
TBD), so that arbitrarily wide memory accesses are supported. These
changes are required for supporting ISAs with wide vectors.
Additional authors:
- Gabor Dozsa <gabor.dozsa@arm.com>
- Tiago Muck <tiago.muck@arm.com>
Change-Id: Ibad33541c258ad72925c0b1d5abc3e5e8bf92d92
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/13518
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
This changeset introduces a new predicate to guard memory accesses.
The most immediate use for this is to allow proper handling of
predicated-false vector contiguous loads and predicated-false
micro-ops of vector gather loads (added in separate changesets).
Change-Id: Ice6894fe150faec2f2f7ab796a00c99ac843810a
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/17991
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Bradley Wang <radwang@ucdavis.edu>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
This is now handled within the ISA description.
Change-Id: Ie409bb46d102e59d4eb41408d9196fe235626d32
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18434
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This mechanism is specific to Alpha and doesn't belong sprinkled around
the CPU's generic mechanisms.
Change-Id: I87904d1a08df2b03eb770205e2c4b94db25201a1
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18432
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
Then cast to the ISA specific type when necessary. This removes
(mostly) an ISA specific aspect to some of the interfaces. The ISA
specific version of the kernel stats still needs to be constructed and
stored in a few places which means that kernel_stats.hh still needs to
be a switching arch header, for instance.
In the future, I'd like to make the kernel its own object like the
Process objects in SE mode, and then it would be able to instantiate
and maintain its own stats.
Change-Id: I8309d49019124f6bea1482aaea5b5b34e8c97433
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18429
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
These are implemented by MIPS internally now.
Change-Id: If7465e1666e51e1314968efb56a5a814e62ee2d1
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18436
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
Replace it with direct inheritance from the ThreadContext class in the
SimpleThread class which was the only place it was used.
Also take the opportunity to use some specialized types instead of
ints, etc., add some consts, and fix some style issues.
Change-Id: I5d2cfa87b20dc43615e33e6755c9d016564e9c0e
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18048
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This patch is adding a ISA* getter to the TC interface
Change-Id: Ib8ddc5d8fdd44e782f50a2ad15878a6bcf931e58
Reviewed-on: https://gem5-review.googlesource.com/c/16462
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
|
|
This patch enables all 4 CPU models (AtomicSimpleCPU, TimingSimpleCPU,
MinorCPU and DerivO3CPU) to issue atomic memory (AMO) requests to memory
system.
Atomic memory instruction is treated as a special store instruction in
all CPU models.
In simple CPUs, an AMO request with an associated AtomicOpFunctor is
simply sent to L1 dcache.
In MinorCPU, an AMO request bypasses store buffer and waits for any
conflicting store request(s) currently in the store buffer to retire
before the AMO request is sent to the cache. AMO requests are not buffered
in the store buffer, so their effects appear immediately in the cache.
In DerivO3CPU, an AMO request is inserted in the store buffer so that it
is delivered to the cache only after all previous stores are issued to
the cache. Data forwarding between between an outstanding AMO in the
store buffer and a subsequent load is not allowed since the AMO request
does not hold valid data until it's executed in the cache.
This implementation assumes that a target ISA implementation must insert
enough memory fences as micro-ops around an atomic instruction to
enforce a correct order of memory instructions with respect to its
memory consistency model. Without extra memory fences, this implementation
can allow AMOs and other memory instructions that do not conflict
(i.e., not target the same address) to reorder.
This implementation also assumes that atomic instructions execute within
a cache line boundary since the cache for now is not able to execute an
operation on two different cache lines in one single step. Therefore,
ISAs like x86 that require multi-cache-line atomic instructions need to
either use a pair of locking load and unlocking store or change the
cache implementation to guarantee the atomicity of an atomic
instruction.
Change-Id: Ib8a7c81868ac05b98d73afc7d16eb88486f8cf9a
Reviewed-on: https://gem5-review.googlesource.com/c/8188
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Added missing specifier for various virtual functions.
Change-Id: I4783e92d78789a9ae182fad79aadceafb00b2458
Reviewed-on: https://gem5-review.googlesource.com/c/16103
Reviewed-by: Hoa Nguyen <hoanguyen@ucdavis.edu>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Most architectures weren't using the CCReg type, and in x86 and arm
it was already a uint64_t.
Change-Id: I0b3d5e690e6b31db6f2627f449c89bde0f6750a6
Reviewed-on: https://gem5-review.googlesource.com/c/14515
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Now that there's no plain FloatReg, there's no reason to distinguish
FloatRegBits with a special suffix since it's the only way to read or
write FP registers.
Change-Id: I3a60168c1d4302aed55223ea8e37b421f21efded
Reviewed-on: https://gem5-review.googlesource.com/c/14460
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Latest-gen. vector/SIMD extensions, including the Arm Scalable Vector
Extension (SVE), introduce the notion of a predicate register file.
This changeset adds this feature across architectures and CPU models.
Change-Id: Iebcadbad89c0a582ff8b1b70de353305db603946
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13715
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
These values are all basic integers (specifically uint64_t now), and
so passing them by const & is actually less efficient since there's a
extra level of indirection and an extra value, and the same sized value
(a 64 bit pointer vs. a 64 bit int) is being passed around.
Change-Id: Ie9956b8dc4c225068ab1afaba233ec2b42b76da3
Reviewed-on: https://gem5-review.googlesource.com/c/13626
Maintainer: Gabe Black <gabeblack@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
These types are IntReg, FloatReg, FloatRegBits, and MiscReg. There are
some remaining types, specifically the vector registers and the CCReg.
I'm less familiar with these new types of registers, and so will look
at getting rid of them at some later time.
Change-Id: Ide8f76b15c531286f61427330053b44074b8ac9b
Reviewed-on: https://gem5-review.googlesource.com/c/13624
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Use the binary accessors instead.
Change-Id: Iff1877e92c79df02b3d13635391a8c2f025776a2
Reviewed-on: https://gem5-review.googlesource.com/c/14457
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
The value that is not initialized has a bogus value that manifests when
using some debug-flags what makes the usage of tracediff a bit more
challenging.
In addition, while debugging with other techniques, it introduces the
problem of understanding if the value of a field is 'intended' or just
an effect of the lack of initialisation.
Change-Id: Ied88caa77479c6f1d5166d80d1a1a057503cb106
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13125
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Summary: Usage of const DynInstPtr& when possible and introduction of
move operators to RefCountingPtr.
In many places, scoped references to dynamic instructions do a copy of
the DynInstPtr when a reference would do. This is detrimental to
performance. On top of that, in case there is a need for reference
tracking for debugging, the redundant copies make the process much more
painful than it already is.
Also, from the theoretical point of view, a function/method that
defines a convenience name to access an instruction should not be
considered an owner of the data, i.e., doing a copy and not a reference
is not justified.
On a related topic, C++11 introduces move semantics, and those are
useful when, for example, there is a class modelling a HW structure that
contains a list, and has a getHeadOfList function, to prevent doing a
copy to an internal variable -> update pointer, remove from the list ->
update pointer, return value making a copy to the assined variable ->
update pointer, destroy the returned value -> update pointer.
Change-Id: I3bb46c20ef23b6873b469fd22befb251ac44d2f6
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13105
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
This patch is changing the underlying type for RequestPtr from Request*
to shared_ptr<Request>. Having memory requests being managed by smart
pointers will simplify the code; it will also prevent memory leakage and
dangling pointers.
Change-Id: I7749af38a11ac8eb4d53d8df1252951e0890fde3
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/10996
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Every usage of Request* in the code has been replaced with the
RequestPtr alias. This is a preparing patch for when RequestPtr will be
the typdefed to a smart pointer to Request rather then a raw pointer to
Request.
Change-Id: I73cbaf2d96ea9313a590cdc731a25662950cd51a
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/10995
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
|
|
With this patch a gem5 System will store more info about its Masters.
While it was previously keeping track of the Master name and Master ID
only, it is now adding a per-Master pointer to the SimObject related to
the Master.
This will make it possible for a client to query a System for a Master
using either the master's name or the master's pointer.
Change-Id: I8b97d328a65cd06f329e2cdd3679451c17d2b8f6
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/9781
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Get rid of some remnants of a system which was intended to separate
address computation into its own instruction object.
Change-Id: I23f9ffd70fcb89a8ea5bbb934507fb00da9a0b7f
Reviewed-on: https://gem5-review.googlesource.com/7122
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
CPUs have historically instantiated the architecture specific version
of the TLBs to avoid a virtual function call, making them a little bit
more dependent on what the current ISA is. Some simple performance
measurement, the x86 twolf regression on the atomic CPU, shows that
there isn't actually any performance benefit, and if anything the
simulator goes slightly faster (although still within margin of error)
when the TLB functions are virtual.
This change switches everything outside of the architectures themselves
to use the generic BaseTLB type, and then inside the ISA for them to
cast that to their architecture specific type to call into architecture
specific interfaces.
The ARM TLB needed the most adjustment since it was using non-standard
translation function signatures. Specifically, they all took an extra
"type" parameter which defaulted to normal, and translateTiming
returned a Fault. translateTiming actually doesn't need to return a
Fault because everywhere that consumed it just stored it into a
structure which it then deleted(?), and the fault is stored in the
Translation object when the translation is done.
A little more work is needed to fully obviate the arch/tlb.hh header,
so the TheISA::TLB type is still visible outside of the ISAs.
Specifically, the TlbEntry type is used in the generic PageTable which
lives in src/mem.
Change-Id: I51b68ee74411f9af778317eff222f9349d2ed575
Reviewed-on: https://gem5-review.googlesource.com/6921
Maintainer: Gabe Black <gabeblack@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Cache maintenance operations go through the write channel of the
cpu. This changes makes sure that the cpu does not try to fill in the
packet with data.
Change-Id: Ic83205bb1cda7967636d88f15adcb475eb38d158
Reviewed-by: Stephan Diestelhorst <stephan.diestelhorst@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5055
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
This patch adds some more functionality to the cpu model and the arch to
interface with the vector register file.
This change consists mainly of augmenting ThreadContexts and ExecContexts
with calls to get/set full vectors, underlying microarchitectural elements
or lanes. Those are meant to interface with the vector register file. All
classes that implement this interface also get an appropriate implementation.
This requires implementing the vector register file for the different
models using the VecRegContainer class.
This change set also updates the Result abstraction to contemplate the
possibility of having a vector as result.
The changes also affect how the remote_gdb connection works.
There are some (nasty) side effects, such as the need to define dummy
numPhysVecRegs parameter values for architectures that do not implement
vector extensions.
Nathanael Premillieu's work with an increasing number of fixes and
improvements of mine.
Change-Id: Iee65f4e8b03abfe1e94e6940a51b68d0977fd5bb
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues and CC reg free list initialisation ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2705
|
|
The Result union used to collect the result of an instruction is now a
class of its own, with its constructor, and explicit casting methods for
cleanliness.
This is also a stepping stone to have vector registers, and instructions
that produce a vector register as output.
Change-Id: I6f40c11cb5e835d8b11f7804a4e967aff18025b9
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2703
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
With the hierarchical RegId there are a lot of functions that are
redundant now.
The idea behind the simplification is that instead of having the regId,
telling which kind of register read/write/rename/lookup/etc. and then
the function panic_if'ing if the regId is not of the appropriate type,
we provide an interface that decides what kind of register to read
depending on the register type of the given regId.
Change-Id: I7d52e9e21fc01205ae365d86921a4ceb67a57178
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2702
|
|
Replace the unified register mapping with a structure associating
a class and an index. It is now much easier to know which class of
register the index is referring to. Also, when adding a new class
there is no need to modify existing ones.
Change-Id: I55b3ac80763702aa2cd3ed2cbff0a75ef7620373
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2700
|
|
simulations
Modifies the clone system call and adds execve system call. Requires allowing
processes to steal thread contexts from other processes in the same system
object and the ability to detach pieces of process state (such as MemState)
to allow dynamic sharing.
|
|
This changeset adds functionality that allows system calls to retry without
affecting thread context state such as the program counter or register values
for the associated thread context (when system calls return with a retry
fault).
This functionality is needed to solve problems with blocking system calls
in multi-process or multi-threaded simulations where information is passed
between processes/threads. Blocking system calls can cause deadlock because
the simulator itself is single threaded. There is only a single thread
servicing the event queue which can cause deadlock if the thread hits a
blocking system call instruction.
To illustrate the problem, consider two processes using the producer/consumer
sharing model. The processes can use file descriptors and the read and write
calls to pass information to one another. If the consumer calls the blocking
read system call before the producer has produced anything, the call will
block the event queue (while executing the system call instruction) and
deadlock the simulation.
The solution implemented in this changeset is to recognize that the system
calls will block and then generate a special retry fault. The fault will
be sent back up through the function call chain until it is exposed to the
cpu model's pipeline where the fault becomes visible. The fault will trigger
the cpu model to replay the instruction at a future tick where the call has
a chance to succeed without actually going into a blocking state.
In subsequent patches, we recognize that a syscall will block by calling a
non-blocking poll (from inside the system call implementation) and checking
for events. When events show up during the poll, it signifies that the call
would not have blocked and the syscall is allowed to proceed (calling an
underlying host system call if necessary). If no events are returned from the
poll, we generate the fault and try the instruction for the thread context
at a distant tick. Note that retrying every tick is not efficient.
As an aside, the simulator has some multi-threading support for the event
queue, but it is not used by default and needs work. Even if the event queue
was completely multi-threaded, meaning that there is a hardware thread on
the host servicing a single simulator thread contexts with a 1:1 mapping
between them, it's still possible to run into deadlock due to the event queue
barriers on quantum boundaries. The solution of replaying at a later tick
is the simplest solution and solves the problem generally.
|
|
|
|
Change-Id: I183b9942929c873c3272ce6d1abd4ebc472c7132
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
In general, the ThreadID parameter is unnecessary in the memory system
as the ContextID is what is used for the purposes of locks/wakeups.
Since we allocate sequential ContextIDs for each thread on MT-enabled
CPUs, ThreadID is unnecessary as the CPUs can identify the requesting
thread through sideband info (SenderState / LSQ entries) or ContextID
offset from the base ContextID for a cpu.
This is a re-spin of 20264eb after the revert (bd1c6789) and includes
some fixes of that commit.
|
|
The following patches had unexpected interactions with the current
upstream code and have been reverted for now:
e07fd01651f3: power: Add support for power models
831c7f2f9e39: power: Low-power idle power state for idle CPUs
4f749e00b667: power: Add power states to ClockedObject
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
--HG--
extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
|
|
In general, the ThreadID parameter is unnecessary in the memory system
as the ContextID is what is used for the purposes of locks/wakeups.
Since we allocate sequential ContextIDs for each thread on MT-enabled
CPUs, ThreadID is unnecessary as the CPUs can identify the requesting
thread through sideband info (SenderState / LSQ entries) or ContextID
offset from the base ContextID for a cpu.
|