summaryrefslogtreecommitdiff
path: root/src/cpu/inorder/cpu.hh
AgeCommit message (Collapse)Author
2012-01-28Merge with the main repo.Gabe Black
--HG-- rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
2012-01-17MEM: Add port proxies instead of non-structural portsAndreas Hansson
Port proxies are used to replace non-structural ports, and thus enable all ports in the system to correspond to a structural entity. This has the advantage of accessing memory through the normal memory subsystem and thus allowing any constellation of distributed memories, address maps, etc. Most accesses are done through the "system port" that is used for loading binaries, debugging etc. For the entities that belong to the CPU, e.g. threads and thread contexts, they wrap the CPU data port in a port proxy. The following replacements are made: FunctionalPort > PortProxy TranslatingPort > SETranslatingPortProxy VirtualPort > FSTranslatingPortProxy --HG-- rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
2011-11-18SE/FS: Get rid of includes of config/full_system.hh.Gabe Black
2011-11-18SE/FS: Get rid of FULL_SYSTEM in the CPU directory.Gabe Black
2011-11-01SE/FS: Expose the same methods on the CPUs in SE and FS modes.Gabe Black
2011-10-31SE/FS: Make the functions available from the TC consistent between SE and FS.Gabe Black
2011-09-09Decode: Pull instruction decoding out of the StaticInst class into its own.Gabe Black
This change pulls the instruction decoding machinery (including caches) out of the StaticInst class and puts it into its own class. This has a few intrinsic benefits. First, the StaticInst code, which has gotten to be quite large, gets simpler. Second, the code that handles decode caching is now separated out into its own component and can be looked at in isolation, making it easier to understand. I took the opportunity to restructure the code a bit which will hopefully also help. Beyond that, this change also lays some ground work for each ISA to have its own, potentially stateful decode object. We'd be able to include less contextualizing information in the ExtMachInst objects since that context would be applied at the decoder. Also, the decoder could "know" ahead of time that all the instructions it's going to see are going to be, for instance, 64 bit mode, and it will have one less thing to check when it decodes them. Because the decode caching mechanism has been separated out, it's now possible to have multiple caches which correspond to different types of decoding context. Having one cache for each element of the cross product of different configurations may become prohibitive, so it may be desirable to clear out the cache when relatively static state changes and not to have one for each setting. Because the decode function is no longer universally accessible as a static member of the StaticInst class, a new function was added to the ThreadContexts that returns the applicable decode object.
2011-06-19inorder: use trapPending flag to manage trapsKorey Sewell
2011-06-19inorder: dont handle multiple faults on same cycleKorey Sewell
if a faulting instruction reaches an execution unit, then ignore it and pass it through the pipeline. Once we recognize the fault in the graduation unit, dont allow a second fault to creep in on the same cycle.
2011-06-19inorder: check for interrupts each tickKorey Sewell
use a dummy instruction to facilitate the squash after the interrupts trap
2011-06-19inorder: make InOrder CPU FS compilable/visibleKorey Sewell
make syscall a SE mode only functionality copy over basic FS functions (hwrei) to make FS compile
2011-06-19inorder: redefine DynInst FP result typeKorey Sewell
Sharing the FP value w/the integer values was giving inconsistent results esp. when their is a 32-bit integer register matched w/a 64-bit float value
2011-06-19inorder: treat SE mode syscalls as a trapping instructionKorey Sewell
define a syscallContext to schedule the syscall and then use syscall() to actually perform the action
2011-06-19imported patch squash_from_next_stageKorey Sewell
2011-06-19inorder: update event prioritiesKorey Sewell
dont use offset to calculate this but rather an enum that can be updated
2011-06-19inorder: implement trap handlingKorey Sewell
2011-06-19inorder: use setupSquash for misspeculationKorey Sewell
implement a clean interface to handle branch misprediction and eventually all pipeline flushing
2011-06-19inorder: simplify handling of split accessesKorey Sewell
2011-06-19inorder: inst. iterator cleanupKorey Sewell
get rid of accessing iterators (for instructions) by reference
2011-06-19inorder: add types for dependency checksKorey Sewell
2011-06-19inorder: use flattenIdx for reg indexingKorey Sewell
- also use "threadId()" instead of readTid() everywhere - this will help support more complex ISA indexing
2011-06-19inorder: use m5_hash_map for skedCacheKorey Sewell
since we dont care about if the cache of instruction schedules is sorted or not, then the hash map should be faster
2011-04-15includes: sort all includesNathan Binkert
2011-03-26mips: cleanup ISA-specific codeKorey Sewell
*** (1): get rid of expandForMT function MIPS is the only ISA that cares about having a piece of ISA state integrate multiple threads so add constants for MIPS and relieve the other ISAs from having to define this. Also, InOrder was the only core that was actively calling this function * * * (2): get rid of corespecific type The CoreSpecific type was used as a proxy to pass in HW specific params to a MIPS CPU, but since MIPS FS hasnt been touched for awhile, it makes sense to not force every other ISA to use CoreSpecific as well use a special reset function to set it. That probably should go in a PowerOn reset fault anyway.
2011-02-18inorder: cleanup in destructorsKorey Sewell
cleanup hanging pointers and other cruft in the destructors
2011-02-18inorder: remove reqRemoveListKorey Sewell
we are going to be getting away from creating new resource requests for every instruction so no more need to keep track of a reqRemoveList and clean it up every tick
2011-02-12inorder: stage scheduler for front/back end schedule creationKorey Sewell
add a stage scheduler class to replace InstStage in pipeline_traits.cc use that class to define a default front-end, resource schedule that all instructions will follow. This will also replace the back end schedule in pipeline_traits.cc. The reason for adding this is so that we can cache instruction schedules in the future instead of calling the same function over/over again as well as constantly dynamically alllocating memory on every instruction to try to figure out it's schedule
2011-02-12inorder: cache instruction schedulesKorey Sewell
first step in a optimization to not dynamically allocate an instruction schedule for every instruction but rather used cached schedules
2011-02-04inorder: stage width as a python parameterKorey Sewell
allow the user to specify how many instructions a pipeline stage can process on any given cycle (stageWidth...i.e.bandwidth) by setting the parameter through the python interface rather than compile the code after changing the *.cc file. (we always had the parameter there, but still used the static 'ThePipeline::StageWidth' instead) - Since StageWidth is now dynamically defined, change the interstage communication structure to use a vector and get rid of array and array handling index (toNextStageIndex) since we can just make calls to the list for the same information
2011-01-07Replace curTick global variable with accessor functions.Steve Reinhardt
This step makes it easy to replace the accessor functions (which still access a global variable) with ones that access per-thread curTick values.
2011-01-07inorder: replace schedEvent() code with reschedule().Steve Reinhardt
There were several copies of similar functions that looked like they all replicated reschedule(), so I replaced them with direct calls. Keeping this separate from the previous cset since there may be some subtle functional differences if the code ever reschedules an event that is scheduled but not squashed (though none were detected in the regressions).
2011-01-07inorder: get rid of references to mainEventQueue.Steve Reinhardt
Events need to be scheduled on the queue assigned to the SimObject, not on the global queue (which should be going away). Also cleaned up a number of redundant expressions that made the code unnecessarily verbose.
2011-01-03Move sched_list.hh and timebuf.hh from src/base to src/cpu.Steve Reinhardt
These files really aren't general enough to belong in src/base. This patch doesn't reorder include lines, leaving them unsorted in many cases, but Nate's magic script will fix that up shortly. --HG-- rename : src/base/sched_list.hh => src/cpu/sched_list.hh rename : src/base/timebuf.hh => src/cpu/timebuf.hh
2010-11-08ARM/Alpha/Cpu: Change prefetchs to be more like normal loads.Ali Saidi
This change modifies the way prefetches work. They are now like normal loads that don't writeback a register. Previously prefetches were supposed to call prefetch() on the exection context, so they executed with execute() methods instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs are blank, meaning that they get executed, but don't actually do anything. On Alpha dead cache copy code was removed and prefetches are now normal ops. They count as executed operations, but still don't do anything and IsMemRef is not longer set on them. On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch instructions. The timing simple CPU doesn't try to do anything special for prefetches now and they execute with the normal memory code path.
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-09-13Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.Gabe Black
Also move the "Fault" reference counted pointer type into a separate file, sim/fault.hh. It would be better to name this less similarly to sim/faults.hh to reduce confusion, but fault.hh matches the name of the type. We could change Fault to FaultPtr to match other pointer types, and then changing the name of the file would make more sense.
2010-08-13CPU: Add readBytes and writeBytes functions to the exec contexts.Gabe Black
2010-06-28inorder: remove another debug statKorey Sewell
2010-06-24inorder: cleanup virtual functionsKorey Sewell
remove the annotation 'virtual' from function declaration that isnt being derived from
2010-06-24inorder: enforce 78-character ruleKorey Sewell
2010-06-23inorder-stats: add instruction type statsKorey Sewell
also, remove inst-req stats as default.good for debugging but in terms of pure processor stats they aren't useful
2010-01-31inorder: inst count mgmtKorey Sewell
2010-01-31inorder: add activity statsKorey Sewell
2010-01-31inorder: object cleanup in destructorsKorey Sewell
2010-01-31inorder: user per-thread dummy insts/reqsKorey Sewell
2010-01-31inorder: ctxt switch statsKorey Sewell
- m5 line enforcement on use_def.cc,hh
2010-01-31inorder: add/remove halt/deallocate context respectivelyKorey Sewell
Halt is called from the exit() system call while deallocate is unused. So to clear up things, just use halt and remove deallocate.
2010-01-31inorder: ready thread wakeupKorey Sewell
allow a thread to wakeup and be activated after it has been in suspended state and another thread is switched out. Need to give pipeline stages a "activateThread" function so that can get to their suspended instruction when the time is right.
2010-01-31inorder: fetch thread bugKorey Sewell
dont check total # of threads but instead all active threads
2010-01-31inorder: ready/suspend status fnsKorey Sewell
update/add in the use of isThreadReady & isThreadSuspended functions.Check in activateThread what list a thread is on so it can be managed accordingly.