summaryrefslogtreecommitdiff
path: root/src/cpu/inorder
AgeCommit message (Collapse)Author
2011-01-07inorder: replace schedEvent() code with reschedule().Steve Reinhardt
There were several copies of similar functions that looked like they all replicated reschedule(), so I replaced them with direct calls. Keeping this separate from the previous cset since there may be some subtle functional differences if the code ever reschedules an event that is scheduled but not squashed (though none were detected in the regressions).
2011-01-07inorder: get rid of references to mainEventQueue.Steve Reinhardt
Events need to be scheduled on the queue assigned to the SimObject, not on the global queue (which should be going away). Also cleaned up a number of redundant expressions that made the code unnecessarily verbose.
2011-01-03Move sched_list.hh and timebuf.hh from src/base to src/cpu.Steve Reinhardt
These files really aren't general enough to belong in src/base. This patch doesn't reorder include lines, leaving them unsorted in many cases, but Nate's magic script will fix that up shortly. --HG-- rename : src/base/sched_list.hh => src/cpu/sched_list.hh rename : src/base/timebuf.hh => src/cpu/timebuf.hh
2011-01-03Make commenting on close namespace brackets consistent.Steve Reinhardt
Ran all the source files through 'perl -pi' with this script: s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|; s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|; s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|; Also did a little manual editing on some of the arch/*/isa_traits.hh files and src/SConscript.
2010-12-20Style: Replace some tabs with spaces.Gabe Black
2010-12-07O3: Make all instructions that write a misc. register not perform the write ↵Giacomo Gabrielli
until commit. ARM instructions updating cumulative flags (ARM FP exceptions and saturation flags) are not serialized. Added aliases for ARM FP exceptions and saturation flags in FPSCR. Removed write accesses to the FP condition codes for most ARM VFP instructions: only VCMP and VCMPE instructions update the FP condition codes. Removed a potential cause of seg. faults in the O3 model for NEON memory macro-ops (ARM).
2010-11-08ARM/Alpha/Cpu: Change prefetchs to be more like normal loads.Ali Saidi
This change modifies the way prefetches work. They are now like normal loads that don't writeback a register. Previously prefetches were supposed to call prefetch() on the exection context, so they executed with execute() methods instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs are blank, meaning that they get executed, but don't actually do anything. On Alpha dead cache copy code was removed and prefetches are now normal ops. They count as executed operations, but still don't do anything and IsMemRef is not longer set on them. On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch instructions. The timing simple CPU doesn't try to do anything special for prefetches now and they execute with the normal memory code path.
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-09-20CPU: Fix O3 and possible InOrder segfaults in FS.Gabe Black
2010-09-13CPU: Get rid of the now unnecessary getInst/setInst family of functions.Gabe Black
This code is no longer needed because of the preceeding change which adds a StaticInstPtr parameter to the fault's invoke method, obviating the only use for this pair of functions.
2010-09-13Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.Gabe Black
Also move the "Fault" reference counted pointer type into a separate file, sim/fault.hh. It would be better to name this less similarly to sim/faults.hh to reduce confusion, but fault.hh matches the name of the type. We could change Fault to FaultPtr to match other pointer types, and then changing the name of the file would make more sense.
2010-08-14Inorder: Fix compilation of m5.fast.Gabe Black
printMemData is only used in DPRINTFs. If those are removed by compiling m5.fast, that function is unused, gcc generates a warning, that gets turned into an error, and the build fails. This change surrounds the function definition with #if TRACING_ON so it only gets compiled in if the DPRINTFs do to.
2010-08-13CPU: Add readBytes and writeBytes functions to the exec contexts.Gabe Black
2010-08-13InOrder: Clean up some DPRINTFs that print data sent to/from the cache.Gabe Black
2010-06-28inorder: remove another debug statKorey Sewell
2010-06-26inorder: remove debugging statKorey Sewell
m5 doesnt do stats specific to binary and this resource request stat is probably only useful for people who really know the ins/outs of the model anyway
2010-06-25inorder: Return Address Stack bugKorey Sewell
the nextPC was getting sent to the branch predictor not the current PC, so the RAS was returning the wrong PC and mispredicting everything.
2010-06-25inorder: resource scheduling backendKorey Sewell
replace priority queue with vector of lists(1 list per stage) and place inside a class so that we have more control of when an instruction uses a particular schedule entry ... also, this is the 1st step toward making the InOrderCPU fully parameterizable. See the wiki for details on this process
2010-06-24inorder: cleanup virtual functionsKorey Sewell
remove the annotation 'virtual' from function declaration that isnt being derived from
2010-06-24inorder: enforce 78-character ruleKorey Sewell
2010-06-24inorder: exe_unit_stats for resolved branchesKorey Sewell
2010-06-23inorder: squash from memory stallKorey Sewell
this applies to multithreading models which would like to squash a thread on memory stall
2010-06-23inorder: record load/store trace dataKorey Sewell
2010-06-23inorder: update branch predictorKorey Sewell
- use InOrderBPred instead of Resource for DPRINTFs - account for DELAY SLOT in updating RAS and in squashing - don't let squashed instructions update the predictor - the BTB needs to use the ASID not the TID to work for multithreaded programs - add stats for BTB hits
2010-06-23inorder-stats: add instruction type statsKorey Sewell
also, remove inst-req stats as default.good for debugging but in terms of pure processor stats they aren't useful
2010-06-23inorder: stall signal handlingKorey Sewell
remove stall only when necessary add debugging printfs
2010-06-23inorder: tick schedulingKorey Sewell
use nextCycle to calculate ticks after addition
2010-04-10inorder: timing for inst forwardingKorey Sewell
when insts execute, they mark the time they finish to be used for subsequent isnts they may need forwarding of data. However, the regdepmap was using the wrong value to index into the destination operands of the instruction to be forwarded. Thus, in some cases, we are checking to see if the 3rd destination register for an instruction is executed at a certain time, when there is only 1 dest. register valid. Thus, we get a bad, uninitialized time value that will stall forwarding causing performance loss but still the correct execution.
2010-03-27m5: merge inorder updatesKorey Sewell
2010-03-27inorder: write-hints bug fixKorey Sewell
make sure to only read 1 src reg. for write-hint and any other similar 'store' instruction. Reading the source reg when its not necessary can cause the simulator to read from uninitialized values
2010-03-23cpu: fix exec tracing memory corruption bugSteve Reinhardt
Accessing traceData (to call setAddress() and/or setData()) after initiating a timing translation was causing crashes, since a failed translation could delete the traceData object before returning. It turns out that there was never a need to access traceData after initiating the translation, as the traced data was always available earlier; this ordering was merely historical. Furthermore, traceData->setAddress() and traceData->setData() were being called both from the CPU model and the ISA definition, often redundantly. This patch standardizes all setAddress and setData calls for memory instructions to be in the CPU models and not in the ISA definition. It also moves those calls above the translation calls to eliminate the crashes.
2010-03-22inorder: import name for addtl. bpred statsKorey Sewell
2010-03-22inorder: fix squash bug in branch predictorMaximilien Breughe
2010-03-22inorder: fix address list bugKorey Sewell
2010-02-26cpu_models: get rid of cpu_models.py and move the stuff into SConsNathan Binkert
2010-01-31inorder: double delete inst bugKorey Sewell
Make sure that instructions are dereferenced/deleted twice by marking they are on the remove list
2010-01-31inorder: inst count mgmtKorey Sewell
2010-01-31inorder: implement split storesKorey Sewell
2010-01-31inorder: implement split loadsKorey Sewell
2010-01-31inorder: add activity statsKorey Sewell
2010-01-31inorder: object cleanup in destructorsKorey Sewell
2010-01-31inorder: user per-thread dummy insts/reqsKorey Sewell
2010-01-31inorder: add execution unit statsKorey Sewell
2010-01-31inorder: recvRetry bug fixKorey Sewell
- on certain retry requests you can get an assertion failure - fix by allowing the request to literally "Retry" itself if it wasnt successful before, and then block any requests through cache port while waiting for the cache to be made available for access
2010-01-31inorder-stats: add prereq to basic statKorey Sewell
only show requests processed when the resource is actually in use
2010-01-31inorder: ctxt switch statsKorey Sewell
- m5 line enforcement on use_def.cc,hh
2010-01-31inorder: pipeline stage statsKorey Sewell
add idle/run/utilization stats for each pipeline stage
2010-01-31inorder: enforce stage bandwidthKorey Sewell
each stage keeps track of insts_processed on a per_thread basis but we should be keeping that on a total basis inorder to enforce stage width limits
2010-01-31inorder: set thread status'Korey Sewell
set Active/Suspended/Halted status for threads. useful for system when determining if/when to exit simulation
2010-01-31inorder: add/remove halt/deallocate context respectivelyKorey Sewell
Halt is called from the exit() system call while deallocate is unused. So to clear up things, just use halt and remove deallocate.