Age | Commit message (Collapse) | Author |
|
|
|
This change adds a master id to each request object which can be
used identify every device in the system that is capable of issuing a request.
This is part of the way to removing the numCpus+1 stats in the cache and
replacing them with the master ids. This is one of a series of changes
that make way for the stats output to be changed to python.
|
|
Because there are no longer architecture independent but specialized functions
in arch/XXX/faults.hh, code that isn't using the faults from a particular ISA
no longer needs to be able to include them through the switching header file
arch/faults.hh. By removing that header file (arch/faults.hh), the potential
interface between ISA code and non ISA code is narrowed.
|
|
|
|
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
|
|
|
|
This patch cleans up forward declarations and a member-function
prototype that still referred to the old FunctionalPort, VirtualPort
and TranslatingPort. There is no change in functionality.
|
|
Try to decrease indentation, and remove some redundant FullSystem checks.
|
|
--HG--
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
|
|
This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
|
|
This patch performs minimal changes to move the instruction and data
ports from specialised subclasses to the base CPU (to the largest
degree possible). Ultimately it servers to make the CPU(s) have a
well-defined interface to the memory sub-system.
|
|
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
And by "everything" I mean all the quick regressions.
|
|
|
|
|
|
|
|
|
|
|
|
In FS mode the syscall function will panic, but the interface will be
consistent and code which calls syscall can be compiled in. This will allow,
for instance, instructions that use syscall to be built unconditionally but
then not returned by the decoder.
|
|
Having two StaticInst classes, one nominally ISA dependent and the other ISA
dependent, has not been historically useful and makes the StaticInst class
more complicated that it needs to be. This change merges StaticInstBase into
StaticInst.
|
|
This change pulls the instruction decoding machinery (including caches) out of
the StaticInst class and puts it into its own class. This has a few intrinsic
benefits. First, the StaticInst code, which has gotten to be quite large, gets
simpler. Second, the code that handles decode caching is now separated out
into its own component and can be looked at in isolation, making it easier to
understand. I took the opportunity to restructure the code a bit which will
hopefully also help.
Beyond that, this change also lays some ground work for each ISA to have its
own, potentially stateful decode object. We'd be able to include less
contextualizing information in the ExtMachInst objects since that context
would be applied at the decoder. Also, the decoder could "know" ahead of time
that all the instructions it's going to see are going to be, for instance, 64
bit mode, and it will have one less thing to check when it decodes them.
Because the decode caching mechanism has been separated out, it's now possible
to have multiple caches which correspond to different types of decoding
context. Having one cache for each element of the cross product of different
configurations may become prohibitive, so it may be desirable to clear out the
cache when relatively static state changes and not to have one for each
setting.
Because the decode function is no longer universally accessible as a static
member of the StaticInst class, a new function was added to the ThreadContexts
that returns the applicable decode object.
|
|
|
|
readBytes and writeBytes had the word "bytes" in their names because they
accessed blobs of bytes. This distinguished them from the read and write
functions which handled higher level data types. Because those functions don't
exist any more, this change renames readBytes and writeBytes to more general
names, readMem and writeMem, which reflect the fact that they are how you read
and write memory. This also makes their names more consistent with the
register reading/writing functions, although those are still read and set for
some reason.
|
|
|
|
|
|
this will safeguard future code from trying to remove
from the list twice. That code wouldnt break but would
waste time.
|
|
|
|
|
|
handle them like we do in FS mode, by blocking the TLB until the fault
is handled by the fault->invoke()
|
|
|
|
|
|
|
|
implement clearfetchbufferfunction
extend predecoder to use multiple threads and clear those on trap
|
|
this will make sure we get the correct view of a FP register
|
|
|
|
The DTB expects the correct PC in the ThreadContext
but how if the memory accesses are speculative? Shouldn't
we send along the requestor's PC to the translate functions?
|
|
including IPR accesses and store-conditionals. These class of instructions will not
execute correctly in a superscalar machine
|
|
if a faulting instruction reaches an execution unit,
then ignore it and pass it through the pipeline.
Once we recognize the fault in the graduation unit,
dont allow a second fault to creep in on the same cycle.
|
|
handle "snoop" port registration as well as functional
port setup for FS mode
|
|
use a dummy instruction to facilitate the squash after
the interrupts trap
|
|
Before graduating an instruction, explicitly check fault
by making the fault check it's own separate command
that can be put on an instruction schedule.
|
|
|
|
|