Age | Commit message (Collapse) | Author |
|
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
|
|
Changes wakeup functionality so that only specific threads on SMT
capable cpus are woken.
|
|
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
|
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.
The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.
The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
|
|
This patch tidies up how we create and set the fields of a Request. In
essence it tries to use the constructor where possible (as opposed to
setPhys and setVirt), thus avoiding spreading the information across a
number of locations. In fact, setPhys is made private as part of this
patch, and a number of places where we callede setVirt instead uses
the appropriate constructor.
|
|
activate(), suspend(), and halt() used on thread contexts had an optional
delay parameter. However this parameter was often ignored. Also, when used,
the delay was seemily arbitrarily set to 0 or 1 cycle (no other delays were
ever specified). This patch removes the delay parameter and 'Events'
associated with them across all ISAs and cores. Unused activate logic
is also removed.
|
|
KVM used to use two signals, one for instruction count exits and one
for timer exits. There is really no need to distinguish between the
two since they only trigger exits from KVM. This changeset unifies and
renames the signals and adds a method, kick(), that can be used to
raise the control signal in the vCPU thread. It also removes the early
timer warning since we do not normally see if the signal was
delivered.
--HG--
extra : rebase_source : cd0e45ca90894c3d6f6aa115b9b06a1d8f0fda4d
|
|
This changeset adds support for INIT and STARTUP IPI handling. We
currently handle both of these interrupts in gem5 and transfer the
state to KVM. Since we do not have a BIOS loaded, we pretend that the
INIT interrupt suspends the CPU after reset.
--HG--
extra : rebase_source : 7f3b25f3801d68f668b6cd91eaf50d6f48ee2a6a
|
|
The introduction of parallel event queues added most of the support
needed to run multiple VMs (systems) within the same gem5
instance. This changeset fixes up signal delivery so that KVM's
control signals are delivered to the thread that executes the CPU's
event queue. Specifically:
* Timers and counters are now initialized from a separate method
(startupThread) that is scheduled as the first event in the
thread-specific event queue. This ensures that they are
initialized from the thread that is going to execute the CPUs
event queue and enables signal delivery to the right thread when
exiting from KVM.
* The POSIX-timer-based KVM timer (used to force exits from KVM) has
been updated to deliver signals to the thread that's executing KVM
instead of the process (thread is undefined in that case). This
assumes that the timer is instantiated from the thread that is
going to execute the KVM vCPU.
* Signal masking is now done using pthread_sigmask instead of
sigprocmask. The behavior of the latter is undefined in threaded
applications.
* Since signal masks can be inherited, make sure to actively unmask
the control signals when setting up the KVM signal mask.
There are currently no facilities to multiplex between multiple KVM
CPUs in the same event queue, we are therefore limited to
configurations where there is only one KVM CPU per event queue. In
practice, this means that multi-system configurations can be
simulated, but not multiple CPUs in a shared-memory configuration.
|
|
|
|
Instruction events are currently ignored when executing in KVM. This
changeset adds support for triggering KVM exits based on instruction
counts using hardware performance counters. Depending on the
underlying performance counter implementation, there might be some
inaccuracies due to instructions being counted in the host kernel when
entering/exiting KVM.
Due to limitations/bugs in Linux's performance counter interface, we
can't reliably change the period of an overflow counter. We work
around this issue by detaching and reattaching the counter if we need
to reconfigure it.
|
|
This changeset adds the following stats to KVM:
* numVMHalfEntries: Number of entries into KVM to finalize pending
IO operations without executing guest instructions. These typically
happen as a result of a drain where the guest must finalize some
operations before the guest state is consistent.
* numExitSignal: Number of VM exits that have been triggered by a
signal. These usually happen as a result of the timer that limits
the time spent in KVM.
|
|
We used to use the KVM CPU's clock to specify the host frequency. This
was not ideal for several reasons. One of them being that the clock
parameter of a CPU determines the frequency of some of the components
connected to the CPU. This changeset adds a separate hostFreq
parameter that should be used to specify the host frequency until we
add code to autodetect it. The hostFactor should still be used to
specify the conversion factor between the host performance and that of
the simulated system.
|
|
We currently execute instructions in the guest and then handle any IO
request right after we break out of the virtualized environment. This
has the effect of executing IO requests in the exact same tick as the
first instruction in the sequence that was just run. There seem to be
cases where this simplification upsets some timing-sensitive devices.
This changeset splits execute and IO (and other services) across
multiple ticks. This is implemented by adding a separate
RunningService state to the CPU state machine. When a VM requires
service, it enters into this state and pending IO is then serviced in
the future instead of immediately. The delay between getting the
request and servicing it depends on the number of cycles executed in
the guest, which allows other components to catch up with the CPU.
|
|
Update the system's totalNumInst counter when exiting from KVM and
maintain an internal absolute instruction count instead of relying on
the one from perf.
|
|
Some architectures have special registers in the guest that can be
used to do cycle accounting. This is generally preferrable since the
prevents the guest from seeing a non-monotonic clock. This changeset
adds a virtual method, getHostCycles(), that the architecture-specific
code can override to implement this functionallity. The default
implementation uses the hwCycles counter.
|
|
The CpuPort class was removed before the KVM patches were committed,
which means that the KVM interface currently doesn't compile. This
changeset adds the BaseKvmCPU::KVMCpuPort class which derives from
MasterPort. This class is used on the data and instruction ports
instead of the old CpuPort.
|
|
This changeset adds a 'numInsts' stat to the KVM-based CPU. It also
cleans up the variable names in kvmRun to make the distinction between
host cycles and estimated simulated cycles clearer. As a bonus
feature, it also fixes a warning (unreferenced variable) when
compiling in fast mode.
|
|
Add support for using the CPU cycle counter instead of a normal POSIX
timer to generate timed exits to gem5. This should, in theory, provide
better resolution when requesting timer signals.
The perf-based timer requires a fairly recent kernel since it requires
a working PERF_EVENT_IOC_PERIOD ioctl. This ioctl has existed in the
kernel for a long time, but it used to be completely broken due to an
inverted match when the kernel copied things from user
space. Additionally, the ioctl does not change the sample period
correctly on all kernel versions which implement it. It is currently
only known to work reliably on kernel version 3.7 and above on ARM.
|
|
Reduce the number of KVM->TC synchronizations by overloading the
getContext() method and only request an update when the TC is
requested as opposed to every time KVM returns to gem5.
|
|
This changeset introduces the architecture independent parts required
to support KVM-accelerated CPUs. It introduces two new simulation
objects:
KvmVM -- The KVM VM is a component shared between all CPUs in a shared
memory domain. It is typically instantiated as a child of the
system object in the simulation hierarchy. It provides access
to KVM VM specific interfaces.
BaseKvmCPU -- Abstract base class for all KVM-based CPUs. Architecture
dependent CPU implementations inherit from this class
and implement the following methods:
* updateKvmState() -- Update the
architecture-dependent KVM state from the gem5
thread context associated with the CPU.
* updateThreadContext() -- Update the thread context
from the architecture-dependent KVM state.
* dump() -- Dump the KVM state using (optional).
In order to deliver interrupts to the guest, CPU
implementations typically override the tick() method and
check for, and deliver, interrupts prior to entering
KVM.
Hardware-virutalized CPU currently have the following limitations:
* SE mode is not supported.
* PC events are not supported.
* Timing statistics are currently very limited. The current approach
simply scales the host cycles with a user-configurable factor.
* The simulated system must not contain any caches.
* Since cycle counts are approximate, there is no way to request an
exact number of cycles (or instructions) to be executed by the CPU.
* Hardware virtualized CPUs and gem5 CPUs must not execute at the
same time in the same simulator instance.
* Only single-CPU systems can be simulated.
* Remote GDB connections to the guest system are not supported.
Additionally, m5ops requires an architecture specific interface and
might not be supported.
|