summaryrefslogtreecommitdiff
path: root/src/cpu/minor/lsq.cc
AgeCommit message (Collapse)Author
2015-01-25sim: Clean up InstRecordAli Saidi
Track memory size and flags as well as add some comments and consts.
2015-01-20cpu: Fix retry bug in MinorCPU LSQAndreas Hansson
2015-01-03minor: fixed LSQ MasterPortIDAndrew Lukefahr
Minor was reporting the data cache access as ".inst" accesses. This just switches the MasterPortID to dataMasterPortId. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-12-02cpu: Fix retries on barrier/store in Minor's store bufferAndrew Bardsley
This patch fixes a case where a store in Minor's store buffer never leaves the store buffer as it is pre-maturely counted as having been issued, leading to the store buffer idling. LSQ::StoreBuffer::numUnissuedAccesses should count the number of accesses either in memory, or still in the store buffer after being completed. For stores which are also barriers, the store will stay in the store buffer for a cycle after it is completed and will be cleaned up by the barrier clearing code (to ensure that barriers are completed in-order). To acheive this, numUnissuedAccesses is not decremented when a store-barrier is issued to memory, but when its barrier effect is cleared. Without this patch, the correct behaviour happens when a memory transaction is immediately accepted, but not if it needs a retry.
2014-12-02mem: Assume all dynamic packet data is array allocatedAndreas Hansson
This patch simplifies how we deal with dynamically allocated data in the packet, always assuming that it is array allocated, and hence should be array deallocated (delete[] as opposed to delete). The only uses of dataDynamic was in the Ruby testers. The ARRAY_DATA flag in the packet is removed accordingly. No defragmentation of the flags is done at this point, leaving a gap in the bit masks. As the last part the patch, it renames dataDynamicArray to dataDynamic.
2014-12-02mem: Add const getters for write packet dataAndreas Hansson
This patch takes a first step in tightening up how we use the data pointer in write packets. A const getter is added for the pointer itself (getConstPtr), and a number of member functions are also made const accordingly. In a range of places throughout the memory system the new member is used. The patch also removes the unused isReadWrite function.
2014-10-29cpu: Fix barrier push to store buffer when full bug in MinorAndrew Bardsley
This patch fixes a bug where a completing load or store which is also a barrier can push a barrier into the store buffer without first checking that there is a free slot. The bug was not fatal but would print a warning that the store buffer was full when inserting.
2014-09-19arch: Pass faults by const reference where possibleAndreas Hansson
This patch changes how faults are passed between methods in an attempt to copy as few reference-counting pointer instances as possible. This should avoid unecessary copies being created, contributing to the increment/decrement of the reference counters.
2014-09-12cpu: Fix memory access in Minor not setting parent Request flagsAndrew Bardsley
This patch fixes cases where uncacheable/memory type flags are not set correctly on a memory op which is split in the LSQ. Without this patch, request->request if freely used to check flags where the flags should actually come from the accumulation of request fragment flags. This patch also fixes a bug where an uncacheable access which passes through tryToSendRequest more than once can increment LSQ::numAccessesInMemorySystem more than once.
2014-07-23cpu: `Minor' in-order CPU modelAndrew Bardsley
This patch contains a new CPU model named `Minor'. Minor models a four stage in-order execution pipeline (fetch lines, decompose into macroops, decompose macroops into microops, execute). The model was developed to support the ARM ISA but should be fixable to support all the remaining gem5 ISAs. It currently also works for Alpha, and regressions are included for ARM and Alpha (including Linux boot). Documentation for the model can be found in src/doc/inside-minor.doxygen and its internal operations can be visualised using the Minorview tool utils/minorview.py. Minor was designed to be fairly simple and not to engage in a lot of instruction annotation. As such, it currently has very few gathered stats and may lack other gem5 features. Minor is faster than the o3 model. Sample results: Benchmark | Stat host_seconds (s) ---------------+--------v--------v-------- (on ARM, opt) | simple | o3 | minor | timing | timing | timing ---------------+--------+--------+-------- 10.linux-boot | 169 | 1883 | 1075 10.mcf | 117 | 967 | 491 20.parser | 668 | 6315 | 3146 30.eon | 542 | 3413 | 2414 40.perlbmk | 2339 | 20905 | 11532 50.vortex | 122 | 1094 | 588 60.bzip2 | 2045 | 18061 | 9662 70.twolf | 207 | 2736 | 1036