Age | Commit message (Collapse) | Author |
|
Coverage was wrongly set to PartialAddrRangeCoverage in the case of
disjoint adjacent ranges
Change-Id: I29aaf5145e6cdcf5f0b8f4e009d57ee57bd4c944
Signed-off-by: Pau Cabre <pau.cabre@metempsy.com>
Reviewed-on: https://gem5-review.googlesource.com/4640
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Change-Id: If765c6100d67556f157e4e61aa33c2b7eeb8d2f0
Signed-off-by: Sean Wilson <spwilson2@wisc.edu>
Reviewed-on: https://gem5-review.googlesource.com/3923
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
This patch adds some more functionality to the cpu model and the arch to
interface with the vector register file.
This change consists mainly of augmenting ThreadContexts and ExecContexts
with calls to get/set full vectors, underlying microarchitectural elements
or lanes. Those are meant to interface with the vector register file. All
classes that implement this interface also get an appropriate implementation.
This requires implementing the vector register file for the different
models using the VecRegContainer class.
This change set also updates the Result abstraction to contemplate the
possibility of having a vector as result.
The changes also affect how the remote_gdb connection works.
There are some (nasty) side effects, such as the need to define dummy
numPhysVecRegs parameter values for architectures that do not implement
vector extensions.
Nathanael Premillieu's work with an increasing number of fixes and
improvements of mine.
Change-Id: Iee65f4e8b03abfe1e94e6940a51b68d0977fd5bb
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues and CC reg free list initialisation ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2705
|
|
With the hierarchical RegId there are a lot of functions that are
redundant now.
The idea behind the simplification is that instead of having the regId,
telling which kind of register read/write/rename/lookup/etc. and then
the function panic_if'ing if the regId is not of the appropriate type,
we provide an interface that decides what kind of register to read
depending on the register type of the given regId.
Change-Id: I7d52e9e21fc01205ae365d86921a4ceb67a57178
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2702
|
|
Replace the unified register mapping with a structure associating
a class and an index. It is now much easier to know which class of
register the index is referring to. Also, when adding a new class
there is no need to modify existing ones.
Change-Id: I55b3ac80763702aa2cd3ed2cbff0a75ef7620373
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2700
|
|
This changeset adds functionality that allows system calls to retry without
affecting thread context state such as the program counter or register values
for the associated thread context (when system calls return with a retry
fault).
This functionality is needed to solve problems with blocking system calls
in multi-process or multi-threaded simulations where information is passed
between processes/threads. Blocking system calls can cause deadlock because
the simulator itself is single threaded. There is only a single thread
servicing the event queue which can cause deadlock if the thread hits a
blocking system call instruction.
To illustrate the problem, consider two processes using the producer/consumer
sharing model. The processes can use file descriptors and the read and write
calls to pass information to one another. If the consumer calls the blocking
read system call before the producer has produced anything, the call will
block the event queue (while executing the system call instruction) and
deadlock the simulation.
The solution implemented in this changeset is to recognize that the system
calls will block and then generate a special retry fault. The fault will
be sent back up through the function call chain until it is exposed to the
cpu model's pipeline where the fault becomes visible. The fault will trigger
the cpu model to replay the instruction at a future tick where the call has
a chance to succeed without actually going into a blocking state.
In subsequent patches, we recognize that a syscall will block by calling a
non-blocking poll (from inside the system call implementation) and checking
for events. When events show up during the poll, it signifies that the call
would not have blocked and the syscall is allowed to proceed (calling an
underlying host system call if necessary). If no events are returned from the
poll, we generate the fault and try the instruction for the thread context
at a distant tick. Note that retrying every tick is not efficient.
As an aside, the simulator has some multi-threading support for the event
queue, but it is not used by default and needs work. Even if the event queue
was completely multi-threaded, meaning that there is a hardware thread on
the host servicing a single simulator thread contexts with a 1:1 mapping
between them, it's still possible to run into deadlock due to the event queue
barriers on quantum boundaries. The solution of replaying at a later tick
is the simplest solution and solves the problem generally.
|
|
Used cppclean to help identify useless includes and removed them. This
involved erroneously included headers, but also cases where forward
declarations could have been used rather than a full include.
|
|
|
|
The Minor and o3 cpu models share the branch prediction
code. Minor relies on the BPredUnit::squash() function
to update the branch predictor tables on a branch mispre-
diction. This is fine because Minor executes in-order, so
the update is on the correct path. However, this causes the
branch predictor to be updated on out-of-order branch
mispredictions when using the o3 model, which should not
be the case.
This patch guards against speculative update of the branch
prediction tables. On a branch misprediction, BPredUnit::squash()
calls BpredUnit::update(..., squashed = true). The underlying
branch predictor tests against the value of squashed. If it is
true, it restores any speculatively updated internal state
it might have (e.g., global/local branch history), then returns.
If false, it updates its prediction tables. Previously, exist-
ing predictors did not test against the "squashed" parameter.
To accomodate for this change, the Minor model must now call
BPredUnit::squash() then BPredUnit::update(..., squashed = false)
on branch mispredictions. Before, calling BpredUnit::squash()
performed the prediction tables update.
The effect is a slight MPKI improvement when using the o3
model. A further patch should perform the same modifications
for the indirect target predictor and BTB (less critical).
Signed-off-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Modify the opClass assigned to AArch64 FP instructions from SimdFloat* to
Float*. Also create the FloatMemRead and FloatMemWrite opClasses, which
distinguishes writes to the INT and FP register banks.
Change the latency of (Simd)FloatMultAcc to 5, based on the Cortex-A72,
where the "latency" of FMADD is 3 if the next instruction is a FMADD and
has only the augend to destination dependency, otherwise it's 7 cycles.
Signed-off-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Change-Id: Ic37311443ca11ee6d95bceffea599e054e7aa110
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Change-Id: I183b9942929c873c3272ce6d1abd4ebc472c7132
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
The behavior of WFI is to cause minor to cease evaluating
pipeline logic until an interrupt is observed, however
a user may wish to drain the system while a core is sleeping
due to a WFI. This patch makes WFI drain. If an actual
drain occurs during a WFI, the CPU is already drained and will
immediately be ready for swapping, checkpointing, etc. This
should not negatively impact performance as WFI instructions
are 'stream-changing' (treated like unpredicted branches), so
all remaining instructions are wrong-path and will be squashed
rapidly.
Change-Id: I63833d5acb53d8dde78f9f0c9611de0ece385e45
|
|
This patch adds SMT support to the MinorCPU. Currently
RoundRobin or Random thread scheduling are supported.
Change-Id: I91faf39ff881af5918cca05051829fc6261f20e3
|
|
Add functionality to the BaseCPU that will put the entire CPU
into a low-power idle state whenever all threads in it are idle.
Change-Id: I984d1656eb0a4863c87ceacd773d2d10de5cfd2b
|
|
MinorCPU fix for corrupt numCycles when resuming from a previous simulation.
---
src/cpu/minor/cpu.cc | 7 +++++--
1 file changed, 5 insertions(+), 2 deletions(-)
|
|
In general, the ThreadID parameter is unnecessary in the memory system
as the ContextID is what is used for the purposes of locks/wakeups.
Since we allocate sequential ContextIDs for each thread on MT-enabled
CPUs, ThreadID is unnecessary as the CPUs can identify the requesting
thread through sideband info (SenderState / LSQ entries) or ContextID
offset from the base ContextID for a cpu.
This is a re-spin of 20264eb after the revert (bd1c6789) and includes
some fixes of that commit.
|
|
The following patches had unexpected interactions with the current
upstream code and have been reverted for now:
e07fd01651f3: power: Add support for power models
831c7f2f9e39: power: Low-power idle power state for idle CPUs
4f749e00b667: power: Add power states to ClockedObject
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
--HG--
extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
|
|
In general, the ThreadID parameter is unnecessary in the memory system
as the ContextID is what is used for the purposes of locks/wakeups.
Since we allocate sequential ContextIDs for each thread on MT-enabled
CPUs, ThreadID is unnecessary as the CPUs can identify the requesting
thread through sideband info (SenderState / LSQ entries) or ContextID
offset from the base ContextID for a cpu.
|
|
Add functionality to the BaseCPU that will put the entire CPU into a low-power
idle state whenever all threads in it are idle.
|
|
|
|
Writes to locked memory addresses (LLSC) did not wake up the locking
CPU. This can lead to deadlocks on multi-core runs. In AtomicSimpleCPU,
recvAtomicSnoop was checking if the incoming packet was an invalidation
(isInvalidate) and only then handled a locked snoop. But, writes are
seen instead of invalidates when running without caches (fast-forward
configurations). As as simple fix, now handleLockedSnoop is also called
even if the incoming snoop packet are from writes.
|
|
Since the last round of fixes a few new issues have snuck in. We
should consider switching the regression runs to clang.
|
|
This patch changes how the cache determines if snoops should be
forwarded from the memory side to the CPU side. Instead of having a
parameter, the cache now looks at the port connected on the CPU side,
and if it is a snooping port, then snoops are forwarded. Less error
prone, and less parameters to worry about.
The patch also tidies up the CPU classes to ensure that their I-side
port is not snooping by removing overrides to the snoop request
handler, such that snoop requests will panic via the default
MasterPort implement
|
|
Result of running 'hg m5style --skip-all --fix-control -a'.
|
|
For historical reasons, the ExecContext interface had a single
function, readMem(), that did two different things depending on
whether the ExecContext supported atomic memory mode (i.e.,
AtomicSimpleCPU) or timing memory mode (all the other models).
In the former case, it actually performed a memory read; in the
latter case, it merely initiated a read access, and the read
completion did not happen until later when a response packet
arrived from the memory system.
This led to some confusing things, including timing accesses
being required to provide a pointer for the return data even
though that pointer was only used in atomic mode.
This patch splits this interface, adding a new initiateMemRead()
function to the ExecContext interface to replace the timing-mode
use of readMem().
For consistency and clarity, the readMemTiming() helper function
in the ISA definitions is renamed to initiateMemRead() as well.
For x86, where the access size is passed in explicitly, we can
also get rid of the data parameter at this level. For other ISAs,
where the access size is determined from the type of the data
parameter, we have to keep the parameter for that purpose.
|
|
This patch adds explicit overrides as this is now required when using
"-Wall" with clang >= 3.5, the latter now part of the most recent
XCode. The patch consequently removes "virtual" for those methods
where "override" is added. The latter should be enough of an
indication.
As part of this patch, a few minor issues that clang >= 3.5 complains
about are also resolved (unused methods and variables).
|
|
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
|
|
Changes wakeup functionality so that only specific threads on SMT
capable cpus are woken.
|
|
Adds per-thread interrupt controllers and thread/context logic
so that interrupts properly get routed in SMT systems.
|
|
Adds per-thread address monitors to support FullSystem SMT.
|
|
This patch simplifies the packet, and removes the possibility of
creating a packet without a valid address and/or size. Under no
circumstances are these fields set at a later point, and thus they
really have to be provided at construction time.
The patch also fixes a case there the MinorCPU creates a packet
without a valid address and size, only to later delete it.
|
|
Context IDs used to be declared as ad hoc (usually as int). This
changeset introduces a typedef for ContextIDs and a constant for
invalid context IDs.
|
|
Fix a spurious %s and include the state of the Fetch1 stage in the
debug printout.
|
|
The Minor CPU currently doesn't drain properly when it is switched
out. This happens because Fetch 1 expects to be in the FetchHalted
state when it is drained. However, because the CPU is switched out, it
is stuck in the FetchWaitingForPC state. Fix this by ignoring drain
requests and returning DrainState::Drained from MinorCPU::drain() if
the CPU is switched out. This is always safe since a switched out CPU,
by definition, doesn't have any instructions in flight.
|
|
Minor currently activates thread 0 in startup() to work around an
issue where activateContext() is called from LiveProcess before the
process entry point is known. When activateContext() is called, Minor
creates a branch instruction to the process's entry point. The first
time it is called, the branch points to an undefined location (0). The
call in startup() updates the branch to point to the actual entry
point.
When instantiating a switched out Minor CPU, it still tries to
activate thread 0. This is clearly incorrect since a switched out CPU
can't have any active threads. This changeset adds a check to ensure
that the thread is active before reactivating it.
|
|
The drain refactor patches introduced a couple of bugs in the way
Minor handles draining. This patch fixes an incorrect assert and a
case of infinite recursion when the CPU signals drain done.
|
|
|
|
This adds a vector register type. The type is defined as a std::array of a
fixed number of uint64_ts. The isa_parser.py has been modified to parse vector
register operands and generate the required code. Different cpus have vector
register files now.
|
|
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
|
|
The drain state enum is currently a part of the Drainable
interface. The same state machine will be used by the DrainManager to
identify the global state of the simulator. Make the drain state a
global typed enum to better cater for this usage scenario.
|
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
The MinorCPU would count bubbles in Execute::issue as part of
the num_insts_issued and so sometimes reach the instruction
issue limit incorrectly.
Fixed by checking for a bubble in one new place.
|
|
The Request::UNCACHEABLE flag currently has two different
functions. The first, and obvious, function is to prevent the memory
system from caching data in the request. The second function is to
prevent reordering and speculation in CPU models.
This changeset gives the order/speculation requirement a separate flag
(Request::STRICT_ORDER). This flag prevents CPU models from doing the
following optimizations:
* Speculation: CPU models are not allowed to issue speculative
loads.
* Write combining: CPU models and caches are not allowed to merge
writes to the same cache line.
Note: The memory system may still reorder accesses unless the
UNCACHEABLE flag is set. It is therefore expected that the
STRICT_ORDER flag is combined with the UNCACHEABLE flag to prevent
this behavior.
|
|
This patch fixes a recent issue with gcc 4.9 (and possibly more) being
convinced that indices outside the array bounds are used when
initialising the FUPool members.
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The totalInstructions counter is only incremented when the whole instruction is
commited and not on every microop. It was incorrectly reset in atomic and
timing cpus.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>"
|
|
Refactor the way that specific MemCmd values are generated for packets.
The new approach is a little more elegant in that we assign the right
value up front, and it's also more amenable to non-heap-allocated
Packet objects.
Also replaced the code in the Minor model that was still doing it the
ad-hoc way.
This is basically a refinement of http://repo.gem5.org/gem5/rev/711eb0e64249.
|
|
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.
The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.
The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
|