Age | Commit message (Collapse) | Author |
|
This patch adds explicit overrides as this is now required when using
"-Wall" with clang >= 3.5, the latter now part of the most recent
XCode. The patch consequently removes "virtual" for those methods
where "override" is added. The latter should be enough of an
indication.
As part of this patch, a few minor issues that clang >= 3.5 complains
about are also resolved (unused methods and variables).
|
|
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
|
|
Changes wakeup functionality so that only specific threads on SMT
capable cpus are woken.
|
|
Adds per-thread interrupt controllers and thread/context logic
so that interrupts properly get routed in SMT systems.
|
|
Adds per-thread address monitors to support FullSystem SMT.
|
|
This patch simplifies the packet, and removes the possibility of
creating a packet without a valid address and/or size. Under no
circumstances are these fields set at a later point, and thus they
really have to be provided at construction time.
The patch also fixes a case there the MinorCPU creates a packet
without a valid address and size, only to later delete it.
|
|
Context IDs used to be declared as ad hoc (usually as int). This
changeset introduces a typedef for ContextIDs and a constant for
invalid context IDs.
|
|
Fix a spurious %s and include the state of the Fetch1 stage in the
debug printout.
|
|
The Minor CPU currently doesn't drain properly when it is switched
out. This happens because Fetch 1 expects to be in the FetchHalted
state when it is drained. However, because the CPU is switched out, it
is stuck in the FetchWaitingForPC state. Fix this by ignoring drain
requests and returning DrainState::Drained from MinorCPU::drain() if
the CPU is switched out. This is always safe since a switched out CPU,
by definition, doesn't have any instructions in flight.
|
|
Minor currently activates thread 0 in startup() to work around an
issue where activateContext() is called from LiveProcess before the
process entry point is known. When activateContext() is called, Minor
creates a branch instruction to the process's entry point. The first
time it is called, the branch points to an undefined location (0). The
call in startup() updates the branch to point to the actual entry
point.
When instantiating a switched out Minor CPU, it still tries to
activate thread 0. This is clearly incorrect since a switched out CPU
can't have any active threads. This changeset adds a check to ensure
that the thread is active before reactivating it.
|
|
The drain refactor patches introduced a couple of bugs in the way
Minor handles draining. This patch fixes an incorrect assert and a
case of infinite recursion when the CPU signals drain done.
|
|
|
|
This adds a vector register type. The type is defined as a std::array of a
fixed number of uint64_ts. The isa_parser.py has been modified to parse vector
register operands and generate the required code. Different cpus have vector
register files now.
|
|
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
|
|
The drain state enum is currently a part of the Drainable
interface. The same state machine will be used by the DrainManager to
identify the global state of the simulator. Make the drain state a
global typed enum to better cater for this usage scenario.
|
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
The MinorCPU would count bubbles in Execute::issue as part of
the num_insts_issued and so sometimes reach the instruction
issue limit incorrectly.
Fixed by checking for a bubble in one new place.
|
|
The Request::UNCACHEABLE flag currently has two different
functions. The first, and obvious, function is to prevent the memory
system from caching data in the request. The second function is to
prevent reordering and speculation in CPU models.
This changeset gives the order/speculation requirement a separate flag
(Request::STRICT_ORDER). This flag prevents CPU models from doing the
following optimizations:
* Speculation: CPU models are not allowed to issue speculative
loads.
* Write combining: CPU models and caches are not allowed to merge
writes to the same cache line.
Note: The memory system may still reorder accesses unless the
UNCACHEABLE flag is set. It is therefore expected that the
STRICT_ORDER flag is combined with the UNCACHEABLE flag to prevent
this behavior.
|
|
This patch fixes a recent issue with gcc 4.9 (and possibly more) being
convinced that indices outside the array bounds are used when
initialising the FUPool members.
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The totalInstructions counter is only incremented when the whole instruction is
commited and not on every microop. It was incorrectly reset in atomic and
timing cpus.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>"
|
|
Refactor the way that specific MemCmd values are generated for packets.
The new approach is a little more elegant in that we assign the right
value up front, and it's also more amenable to non-heap-allocated
Packet objects.
Also replaced the code in the Minor model that was still doing it the
ad-hoc way.
This is basically a refinement of http://repo.gem5.org/gem5/rev/711eb0e64249.
|
|
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.
The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.
The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
|
|
Finally took the plunge and made this apply to all ISAs, not just ARM.
|
|
Track memory size and flags as well as add some comments and consts.
|
|
|
|
Minor was reporting the data cache access as ".inst" accesses.
This just switches the MasterPortID to dataMasterPortId.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch fixes a case where a store in Minor's store buffer never
leaves the store buffer as it is pre-maturely counted as having been
issued, leading to the store buffer idling.
LSQ::StoreBuffer::numUnissuedAccesses should count the number of accesses
either in memory, or still in the store buffer after being completed.
For stores which are also barriers, the store will stay in the store
buffer for a cycle after it is completed and will be cleaned up by the
barrier clearing code (to ensure that barriers are completed in-order).
To acheive this, numUnissuedAccesses is not decremented when a store-barrier
is issued to memory, but when its barrier effect is cleared.
Without this patch, the correct behaviour happens when a memory transaction
is immediately accepted, but not if it needs a retry.
|
|
This patch fixes the checking of the number of memory instructions issued
per cycles in the Minor CPU.
|
|
This patch simplifies how we deal with dynamically allocated data in
the packet, always assuming that it is array allocated, and hence
should be array deallocated (delete[] as opposed to delete). The only
uses of dataDynamic was in the Ruby testers.
The ARRAY_DATA flag in the packet is removed accordingly. No
defragmentation of the flags is done at this point, leaving a gap in
the bit masks.
As the last part the patch, it renames dataDynamicArray to dataDynamic.
|
|
This patch takes a first step in tightening up how we use the data
pointer in write packets. A const getter is added for the pointer
itself (getConstPtr), and a number of member functions are also made
const accordingly. In a range of places throughout the memory system
the new member is used.
The patch also removes the unused isReadWrite function.
|
|
Another churn to clean up undefined behaviour, mostly ARM, but some
parts also touching the generic part of the code base.
Most of the fixes are simply ensuring that proper intialisation. One
of the more subtle changes is the return type of the sign-extension,
which is changed to uint64_t. This is to avoid shifting negative
values (undefined behaviour) in the ISA code.
|
|
Mwait works as follows:
1. A cpu monitors an address of interest (monitor instruction)
2. A cpu calls mwait - this loads the cache line into that cpu's cache.
3. The cpu goes to sleep.
4. When another processor requests write permission for the line, it is
evicted from the sleeping cpu's cache. This eviction is forwarded to the
sleeping cpu, which then wakes up.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Fixes a bug where Minor drains in the midst of committing a
conditional store.
While committing a conditional store, lastCommitWasEndOfMacroop is true
(from the previous instruction) as we still haven't finished the conditional
store. If a drain occurs before the cache response, Minor would check just
lastCommitWasEndOfMacroop, which was true, and set drainState=DrainHaltFetch,
which increases the streamSeqNum. This caused the conditional store to be
squashed when the memory responded and it completed. However, to the memory
the store succeeded, while to the instruction sequence it never occurred.
In the case of an LLSC, the instruction sequence will replay the squashed
STREX, which will fail as the cache is no longer in LLSC. Then the
instruction sequence will loop back to a LDREX, which receives the updated
(incorrect) value.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch fixes a bug where a completing load or store which is also a
barrier can push a barrier into the store buffer without first checking
that there is a free slot.
The bug was not fatal but would print a warning that the store buffer
was full when inserting.
|
|
This changeset adds probe points that can be used to implement PMU
counters for CPU stats. The following probes are supported:
* BaseCPU::ppCycles / Cycles
* BaseCPU::ppRetiredInsts / RetiredInsts
* BaseCPU::ppRetiredLoads / RetiredLoads
* BaseCPU::ppRetiredStores / RetiredStores
* BaseCPU::ppRetiredBranches RetiredBranches
|
|
This patch optimises the passing of StaticInstPtr by avoiding copying
the reference-counting pointer. This avoids first incrementing and
then decrementing the reference-counting pointer.
|
|
activate(), suspend(), and halt() used on thread contexts had an optional
delay parameter. However this parameter was often ignored. Also, when used,
the delay was seemily arbitrarily set to 0 or 1 cycle (no other delays were
ever specified). This patch removes the delay parameter and 'Events'
associated with them across all ISAs and cores. Unused activate logic
is also removed.
|
|
This patch changes how faults are passed between methods in an attempt
to copy as few reference-counting pointer instances as possible. This
should avoid unecessary copies being created, contributing to the
increment/decrement of the reference counters.
|
|
This patch fixes cases where uncacheable/memory type flags are not set
correctly on a memory op which is split in the LSQ. Without this
patch, request->request if freely used to check flags where the flags
should actually come from the accumulation of request fragment flags.
This patch also fixes a bug where an uncacheable access which passes
through tryToSendRequest more than once can increment
LSQ::numAccessesInMemorySystem more than once.
|
|
|
|
We currently generate and compile one version of the ISA code per CPU
model. This is obviously wasting a lot of resources at compile
time. This changeset factors out the interface into a separate
ExecContext class, which also serves as documentation for the
interface between CPUs and the ISA code. While doing so, this
changeset also fixes up interface inconsistencies between the
different CPU models.
The main argument for using one set of ISA code per CPU model has
always been performance as this avoid indirect branches in the
generated code. However, this argument does not hold water. Booting
Linux on a simulated ARM system running in atomic mode
(opt/10.linux-boot/realview-simple-atomic) is actually 2% faster
(compiled using clang 3.4) after applying this patch. Additionally,
compilation time is decreased by 35%.
|
|
This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).
The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).
Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.
Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.
Minor is faster than the o3 model. Sample results:
Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
|