Age | Commit message (Collapse) | Author |
|
Change-Id: If765c6100d67556f157e4e61aa33c2b7eeb8d2f0
Signed-off-by: Sean Wilson <spwilson2@wisc.edu>
Reviewed-on: https://gem5-review.googlesource.com/3923
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Reiley's update :) of the isa parser definitions. My addition of the
vector element operand concept for the ISA parser. Nathanael's modification
creating a hierarchy between vector registers and its constituencies to the
isa parser.
Some fixes/updates on top to consider instructions as vectors instead of
floating when they use the VectorRF. Some counters added to all the
models to keep faithful counts.
Change-Id: Id8f162a525240dfd7ba884c5a4d9fa69f4050101
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2706
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This changeset adds functionality that allows system calls to retry without
affecting thread context state such as the program counter or register values
for the associated thread context (when system calls return with a retry
fault).
This functionality is needed to solve problems with blocking system calls
in multi-process or multi-threaded simulations where information is passed
between processes/threads. Blocking system calls can cause deadlock because
the simulator itself is single threaded. There is only a single thread
servicing the event queue which can cause deadlock if the thread hits a
blocking system call instruction.
To illustrate the problem, consider two processes using the producer/consumer
sharing model. The processes can use file descriptors and the read and write
calls to pass information to one another. If the consumer calls the blocking
read system call before the producer has produced anything, the call will
block the event queue (while executing the system call instruction) and
deadlock the simulation.
The solution implemented in this changeset is to recognize that the system
calls will block and then generate a special retry fault. The fault will
be sent back up through the function call chain until it is exposed to the
cpu model's pipeline where the fault becomes visible. The fault will trigger
the cpu model to replay the instruction at a future tick where the call has
a chance to succeed without actually going into a blocking state.
In subsequent patches, we recognize that a syscall will block by calling a
non-blocking poll (from inside the system call implementation) and checking
for events. When events show up during the poll, it signifies that the call
would not have blocked and the syscall is allowed to proceed (calling an
underlying host system call if necessary). If no events are returned from the
poll, we generate the fault and try the instruction for the thread context
at a distant tick. Note that retrying every tick is not efficient.
As an aside, the simulator has some multi-threading support for the event
queue, but it is not used by default and needs work. Even if the event queue
was completely multi-threaded, meaning that there is a hardware thread on
the host servicing a single simulator thread contexts with a 1:1 mapping
between them, it's still possible to run into deadlock due to the event queue
barriers on quantum boundaries. The solution of replaying at a later tick
is the simplest solution and solves the problem generally.
|
|
This patch adds probe points in Fetch, IEW, Rename and Commit stages as follows.
A probe point is added in the Fetch stage for probing when a fetch request is
sent. Notify is fired on the probe point when a request is sent succesfully in
the first attempt as well as on a retry attempt.
Probe points are added in the IEW stage when an instruction begins to execute
and when execution is complete. This points can be used for monitoring the
execution time of an instruction.
Probe points are added in the Rename stage to probe renaming of source and
destination registers and when there is squashing. These probe points can be
used to track register dependencies and remove when there is squashing.
A probe point for squashing is added in Commit to probe squashed instructions.
|
|
|
|
|
|
The variable is used in only one place and a whole new function setNextStatus()
has been defined just to compute the value of the variable. Instead of calling
the function, the value is now computed in the loop that preceded the function
call.
|
|
For X86, the o3 CPU would get stuck with the commit stage not being
drained if an interrupt arrived while drain was pending. isDrained()
makes sure that pcState.microPC() == 0, thus ensuring that we are at
an instruction boundary. However, when we take an interrupt we
execute:
pcState.upc(romMicroPC(entry));
pcState.nupc(romMicroPC(entry) + 1);
tc->pcState(pcState);
As a result, the MicroPC is no longer zero. This patch ensures the drain is
delayed until no interrupts are present. Once draining, non-synchronous
interrupts are deffered until after the switch.
|
|
The o3 cpu could attempt to schedule inactive threads under round-robin SMT
mode.
This is because it maintained an independent priority list of threads from the
active thread list. This priority list could be come stale once threads were
inactive, leading to the cpu trying to fetch/commit from inactive threads.
Additionally the fetch queue is now forcibly flushed of instrctuctions
from the de-scheduled thread.
Relevant output:
24557000: system.cpu: [tid:1]: Calling deactivate thread.
24557000: system.cpu: [tid:1]: Removing from active threads list
24557500: system.cpu:
FullO3CPU: Ticking main, FullO3CPU.
24557500: system.cpu.fetch: Running stage.
24557500: system.cpu.fetch: Attempting to fetch from [tid:1]
|
|
The o3 pipeline interlock/stall logic is incorrect. o3 unnecessicarily stalled
fetch and decode due to later stages in the pipeline. In general, a stage
should usually only consider if it is stalled by the adjacent, downstream stage.
Forcing stalls due to later stages creates and results in bubbles in the
pipeline. Additionally, o3 stalled the entire frontend (fetch, decode, rename)
on a branch mispredict while the ROB is being serially walked to update the
RAT (robSquashing). Only should have stalled at rename.
|
|
For the o3, add instruction mix (OpClass) histogram at commit (stats
also already collected at issue). For the simple CPUs we add a
histogram of executed instructions
|
|
The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.
What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py
What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
the regProbeListeners is called on each SimObject. this hooks up the probe
point notify calls with the listeners.
FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.
What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)
What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
about an event.
What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
type of argument (by const reference) to a listener.
What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
1:1, 1:N, N:M relationship. They become useful when a number of modules
listen to the same probe points. The idea being that you can add a small
number of probes into the source code and develop a larger number of useful
analysis modules that use information passed by the probes.
Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
module (outputting assembler), you could re-use this to gather instruction
distribution (arithmetic, load/store, conditional, control flow) stats.
Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
functionality, but not to change functionality.
* of course this can be subverted by const-casting.
What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
relatively minor impact. Profiling has suggested even with a large number of
probes (60) the impact of them (when not active) is very minimal (<1%).
|
|
Check if an instruction just enabled interrupts and we've previously had an
interrupt pending that was not handled because interrupts were subsequently
disabled before the pipeline reached a place to handle the interrupt. In that
case squash now to make sure the interrupt is handled.
|
|
Previously, the O3 CPU could stop in the middle of a microcode
sequence. This patch makes sure that the pipeline stops when it has
committed a normal instruction or exited from a microcode
sequence. Additionally, it makes sure that the pipeline has no
instructions in flight when it is drained, which should make draining
more robust.
Draining is controlled in the commit stage, which checks if the next
PC after a committed instruction is in microcode. If this isn't the
case, it requests a squash of all instructions after that the
instruction that just committed and immediately signals a drain stall
to the fetch stage. The CPU then continues to execute until the
pipeline and all associated buffers are empty.
|
|
Commit can currently both commit and squash in the same cycle. This
confuses other stages since the signals coming from the commit stage
can only signal either a squash or a commit in a cycle. This changeset
changes the behavior of squashAfter so that it commits all
instructions, including the instruction that requested the squash, in
the first cycle and then starts to squash in the next cycle.
|
|
The entire O3 pipeline used to be initialized from init(), which is
called before initState() or unserialize(). This causes the pipeline
to be initialized from an incorrect thread context. This doesn't
currently lead to correctness problems as instructions fetched from
the incorrect start PC will be squashed a few cycles after
initialization.
This patch will affect the regressions since the O3 CPU now issues its
first instruction fetch to the correct PC instead of 0x0.
|
|
these stats are duplicates of insts/opsCommitted, cause
confusion, and are poorly named.
|
|
This patch is a first step to using Cycles as a parameter type. The
main affected modules are the CPUs and the Ruby caches. There are
definitely plenty more places that are affected, but this patch serves
as a starting point to making the transition.
An important part of this patch is to actually enable parameters to be
specified as Param.Cycles which involves some changes to params.py.
|
|
This patch addresses the comments and feedback on the preceding patch
that reworks the clocks and now more clearly shows where cycles
(relative cycle counts) are used to express time.
Instead of bumping the existing patch I chose to make this a separate
patch, merely to try and focus the discussion around a smaller set of
changes. The two patches will be pushed together though.
This changes done as part of this patch are mostly following directly
from the introduction of the wrapper class, and change enough code to
make things compile and run again. There are definitely more places
where int/uint/Tick is still used to represent cycles, and it will
take some time to chase them all down. Similarly, a lot of parameters
should be changed from Param.Tick and Param.Unsigned to
Param.Cycles.
In addition, the use of curTick is questionable as there should not be
an absolute cycle. Potential solutions can be built on top of this
patch. There is a similar situation in the o3 CPU where
lastRunningCycle is currently counting in Cycles, and is still an
absolute time. More discussion to be had in other words.
An additional change that would be appropriate in the future is to
perform a similar wrapping of Tick and probably also introduce a
Ticks class along with suitable operators for all these classes.
|
|
This patch introduces the notion of a clock update function that aims
to avoid costly divisions when turning the current tick into a
cycle. Each clocked object advances a private (hidden) cycle member
and a tick member and uses these to implement functions for getting
the tick of the next cycle, or the tick of a cycle some time in the
future.
In the different modules using the clocks, changes are made to avoid
counting in ticks only to later translate to cycles. There are a few
oddities in how the O3 and inorder CPU count idle cycles, as seen by a
few locations where a cycle is subtracted in the calculation. This is
done such that the regression does not change any stats, but should be
revisited in a future patch.
Another, much needed, change that is not done as part of this patch is
to introduce a new typedef uint64_t Cycle to be able to at least hint
at the unit of the variables counting Ticks vs Cycles. This will be
done as a follow-up patch.
As an additional follow up, the thread context still uses ticks for
the book keeping of last activate and last suspend and this should
probably also be changed into cycles as well.
|
|
|
|
The condition for handling interrupts is to check whether or not the cpu's
instruction list is empty. As observed, this can lead to cases in which even
though the instruction list is empty, interrupts are handled when they should
not be. The condition is being strengthened so that interrupts get handled only
when the last committed microop did not had IsDelayedCommit set.
|
|
|
|
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
|
|
|
|
|
|
|
|
Get rid of unused members and use base types rather than derrived values
where possible to limit amount of state.
|
|
Updated patches from Rick Strong's set that modify performance counters for
McPAT
|
|
Without this change 0 is always used for the youngest sequence number if
a squash occured and the ROB was empty (E.g. an instruction is marked
serializeAfter or a fetch stall prevents other instructions from issuing).
Using 0 there is a race to rename where an instruction that committed the
same cycle as the squashing instruction can have it's renamed state undone
by the squash using sequence number 0.
|
|
When this condition occurs the cpu should restart the fetch stage to fetch from
the original execution path. Fault handling in the commit stage is cleaned up a
little bit so the control flow is simplier. Finally, if an instruction is being
used to carry a fault it isn't executed, so the fault propagates appropriately.
|
|
These files really aren't general enough to belong in src/base.
This patch doesn't reorder include lines, leaving them unsorted
in many cases, but Nate's magic script will fix that up shortly.
--HG--
rename : src/base/sched_list.hh => src/cpu/sched_list.hh
rename : src/base/timebuf.hh => src/cpu/timebuf.hh
|
|
For SPARC ASIs are added to the ExtMachInst. If the ASI is changed simply
marking the instruction as Serializing isn't enough beacuse that only
stops rename. This provides a mechanism to squash all the instructions
and refetch them
|
|
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.
PC type:
Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.
These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.
Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.
Advancing the PC:
The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.
One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.
Variable length instructions:
To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.
ISA parser:
To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.
Return address stack:
The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.
Change in stats:
There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.
TODO:
Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
|
|
|
|
|
|
A whole bunch of stuff has been converted to use the new params stuff, but
the CPU wasn't one of them. While we're at it, make some things a bit
more stylish. Most of the work was done by Gabe, I just cleaned stuff up
a bit more at the end.
|
|
--HG--
extra : convert_revision : c7768d54d3f78685e93920069f5485083ca989c0
|
|
handling. Branch delay slots need to be squash on a mispredict as well because the nnpc they saw was incorrect.
--HG--
extra : convert_revision : 8b9c603616bcad254417a7a3fa3edfb4c8728719
|
|
functions.
src/cpu/o3/alpha/cpu_impl.hh:
Pass ISA-specific O3 CPU to FullO3CPU as a constructor parameter instead of using setCPU functions.
--HG--
extra : convert_revision : 74f4b1f5fb6f95a56081f367cce7ff44acb5688a
|
|
1. Move interrupt handling to a separate function to clean up main commit() function a bit. Also gate the function call off properly based on whether or not there are outstanding interrupts, and the system is not in PAL mode.
2. Better handling of updating instruction's status bits. Instructions are not marked "atCommit" until other stages view it (pushed off to IEW/IQ), and they have been properly handled (faults).
3. Don't consider the ROB "empty" for the purpose of other stages until the ROB is empty, all stores have written back, and there was no store commits this cycle. The last is necessary in case a store committed, in which case it would look like all stores have written back but in actuality have not.
src/cpu/o3/commit.hh:
Slightly modify how interrupts are handled. Also include some extra bools to keep track of state properly.
src/cpu/o3/commit_impl.hh:
Slightly modify how interrupts are handled. Also include some extra bools to keep track of state.
General correctness updates, most specifically for when commit broadcasts to other stages that the ROB is empty.
--HG--
extra : convert_revision : 682ec6ccf4ee6ed0c8a030ceaba1c90a3619d102
|
|
--HG--
extra : convert_revision : 40dfbb72c4e418c54e909c54dad5fe6ef7017cb4
|
|
--HG--
extra : convert_revision : 6b11e039cbc061dab75195fa1aebe6ca2cdc6f91
|
|
src/arch/mips/isa/base.isa:
special case syscall disasembly... maybe give own instruction class?
src/arch/mips/isa/decoder.isa:
add 'IsSerializeAfter' flag for syscall
src/cpu/o3/commit.hh:
Add skidBuffer to commit
src/cpu/o3/commit_impl.hh:
Use skidbuffer in MIPS ISA
src/cpu/o3/fetch_impl.hh:
Print name out when there is a fault
src/cpu/o3/mips/cpu_impl.hh:
change comment
--HG--
extra : convert_revision : d032549e07102bdd50aa09f044fce8de6f0239b5
|
|
builds, runs, and gets very very close to completing the hello world
succesfully but there are some minor quirks to iron out. Who would've known a DELAY SLOT introduces that much complexity?! arrgh!
Anyways, a lot of this stuff had to do with my project at MIPS and me needing to know how I was going to get this working for the MIPS
ISA. So I figured I would try to touch it up and throw it in here (I hate to introduce non-completely working components... )
src/arch/alpha/isa/mem.isa:
spacing
src/arch/mips/faults.cc:
src/arch/mips/faults.hh:
Gabe really authored this
src/arch/mips/isa/decoder.isa:
add StoreConditional Flag to instruction
src/arch/mips/isa/formats/basic.isa:
Steven really did this file
src/arch/mips/isa/formats/branch.isa:
fix bug for uncond/cond control
src/arch/mips/isa/formats/mem.isa:
Adjust O3CPU memory access to use new memory model interface.
src/arch/mips/isa/formats/util.isa:
update LoadStoreBase template
src/arch/mips/isa_traits.cc:
update SERIALIZE partially
src/arch/mips/process.cc:
src/arch/mips/process.hh:
no need for this for NOW. ASID/Virtual addressing handles it
src/arch/mips/regfile/misc_regfile.hh:
add in clear() function and comments for future usage of special misc. regs
src/cpu/base_dyn_inst.hh:
add in nextNPC variable and supporting functions.
add isCondDelaySlot function
Update predTaken and mispredicted functions
src/cpu/base_dyn_inst_impl.hh:
init nextNPC
src/cpu/o3/SConscript:
add MIPS files to compile
src/cpu/o3/alpha/thread_context.hh:
no need for my name on this file
src/cpu/o3/bpred_unit_impl.hh:
Update RAS appropriately for MIPS
src/cpu/o3/comm.hh:
add some extra communication variables to aid in handling the
delay slots
src/cpu/o3/commit.hh:
minor name fix for nextNPC functions.
src/cpu/o3/commit_impl.hh:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/inst_queue_impl.hh:
src/cpu/o3/rename_impl.hh:
Fix necessary variables and functions for squashes with delay slots
src/cpu/o3/cpu.cc:
Update function interface ...
adjust removeInstsNotInROB function to recognize delay slots insts
src/cpu/o3/cpu.hh:
update removeInstsNotInROB
src/cpu/o3/decode.hh:
declare necessary variables for handling delay slot
src/cpu/o3/dyn_inst.hh:
Add in MipsDynInst
src/cpu/o3/fetch.hh:
src/cpu/o3/iew.hh:
src/cpu/o3/rename.hh:
declare necessary variables and adjust functions for handling delay slot
src/cpu/o3/inst_queue.hh:
src/cpu/simple/base.cc:
no need for my name here
src/cpu/o3/isa_specific.hh:
add in MIPS files
src/cpu/o3/scoreboard.hh:
dont include alpha specific isa traits!
src/cpu/o3/thread_context.hh:
no need for my name here, i just rearranged where the file goes
src/cpu/static_inst.hh:
add isCondDelaySlot function
src/cpu/o3/mips/cpu.cc:
src/cpu/o3/mips/cpu.hh:
src/cpu/o3/mips/cpu_builder.cc:
src/cpu/o3/mips/cpu_impl.hh:
src/cpu/o3/mips/dyn_inst.cc:
src/cpu/o3/mips/dyn_inst.hh:
src/cpu/o3/mips/dyn_inst_impl.hh:
src/cpu/o3/mips/impl.hh:
src/cpu/o3/mips/params.hh:
src/cpu/o3/mips/thread_context.cc:
src/cpu/o3/mips/thread_context.hh:
MIPS file for O3CPU...mirrors ALPHA definition
--HG--
extra : convert_revision : 9bb199b4085903e49ffd5a4c8ac44d11460d988c
|
|
src/cpu/SConscript:
Change the error message to be slightly nicer.
src/cpu/o3/commit.hh:
Remove old code.
src/cpu/o3/commit_impl.hh:
Remove old unused code.
--HG--
extra : convert_revision : 48aa430e1f3554007dd5e4f3d9e89b5e4f124390
|
|
has fully drained.
src/cpu/o3/commit.hh:
src/cpu/o3/commit_impl.hh:
src/cpu/o3/decode.hh:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/rename.hh:
src/cpu/o3/rename_impl.hh:
Return a value so that the CPU can instantly return from draining if the pipeline is already drained.
src/cpu/o3/cpu.cc:
Use values returned from pipeline stages so that the CPU can instantly return from draining if the pipeline is already drained.
--HG--
extra : convert_revision : d8ef6b811644ea67c8b40c4719273fa224105811
|
|
out happens after the pipeline has been drained, deferring the three way handshake to the normal drain mechanism. The calls of switchOut() and takeOverFrom() both take action immediately.
src/cpu/o3/commit.hh:
src/cpu/o3/commit_impl.hh:
src/cpu/o3/cpu.cc:
src/cpu/o3/cpu.hh:
src/cpu/o3/decode.hh:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/rename.hh:
src/cpu/o3/rename_impl.hh:
Support for draining, new method of switching out.
--HG--
extra : convert_revision : 05bf8b271ec85b3e2c675c3bed6c42aeba21f465
|
|
Edit Test3 for newmem
src/base/traceflags.py:
Add O3CPU flag
src/cpu/base.cc:
for some reason adding a BaseCPU flag doesnt work so just go back to old way...
src/cpu/o3/alpha/cpu_builder.cc:
Determine number threads by workload size instead of solely by parameter.
Default SMT fetch policy to RoundRobin if it's not specified in Config file
src/cpu/o3/commit.hh:
only use nextNPC for !ALPHA
src/cpu/o3/commit_impl.hh:
add FetchTrapPending as condition for commit
src/cpu/o3/cpu.cc:
panic if active threads is more than Impl::MaxThreads
src/cpu/o3/fetch.hh:
src/cpu/o3/inst_queue.hh:
src/cpu/o3/inst_queue_impl.hh:
src/cpu/o3/rob.hh:
src/cpu/o3/rob_impl.hh:
name stuff
src/cpu/o3/fetch_impl.hh:
fatal if try to use SMT branch count, that's unimplemented right now
src/python/m5/config.py:
make it clearer that a parameter is not valid within a configuration class
--HG--
extra : convert_revision : 55069847304e40e257f9225f0dc3894ce6491b34
|
|
into zamp.eecs.umich.edu:/z/ktlim2/clean/newmem-merge
--HG--
extra : convert_revision : 488b9a9965dd86ca73dc9e510e5b3122cbd357f9
|