summaryrefslogtreecommitdiff
path: root/src/cpu/o3/lsq.hh
AgeCommit message (Collapse)Author
2019-05-12only spec load when hitIru Cai
2019-03-20invisispec-1.0 sourceIru Cai
2018-12-03cpu: Change raw pointers to STL ContainersRekai Gonzalez-Alberquilla
This patch changes two members from being raw pointers to being STL containers. The reason behind, other than cleanlyness and arguable OO best practices is that containers have more intronspections capabilities than naked pointers do, as the size is known. Using STL containers adds little overhead and eases the automation of process during debugging (gdb). Change-Id: I4d9d3eedafa8b5e50ac512ea93b458a4200229f2 Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com> Reviewed-on: https://gem5-review.googlesource.com/c/13126 Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com> Maintainer: Jason Lowe-Power <jason@lowepower.com>
2018-11-16cpu: Fix the usage of const DynInstPtrRekai Gonzalez-Alberquilla
Summary: Usage of const DynInstPtr& when possible and introduction of move operators to RefCountingPtr. In many places, scoped references to dynamic instructions do a copy of the DynInstPtr when a reference would do. This is detrimental to performance. On top of that, in case there is a need for reference tracking for debugging, the redundant copies make the process much more painful than it already is. Also, from the theoretical point of view, a function/method that defines a convenience name to access an instruction should not be considered an owner of the data, i.e., doing a copy and not a reference is not justified. On a related topic, C++11 introduces move semantics, and those are useful when, for example, there is a class modelling a HW structure that contains a list, and has a getHeadOfList function, to prevent doing a copy to an internal variable -> update pointer, remove from the list -> update pointer, return value making a copy to the assined variable -> update pointer, destroy the returned value -> update pointer. Change-Id: I3bb46c20ef23b6873b469fd22befb251ac44d2f6 Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com> Reviewed-on: https://gem5-review.googlesource.com/c/13105 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Jason Lowe-Power <jason@lowepower.com>
2018-06-11misc: Using smart pointers for memory RequestsGiacomo Travaglini
This patch is changing the underlying type for RequestPtr from Request* to shared_ptr<Request>. Having memory requests being managed by smart pointers will simplify the code; it will also prevent memory leakage and dangling pointers. Change-Id: I7749af38a11ac8eb4d53d8df1252951e0890fde3 Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/10996 Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com> Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
2016-04-07mem: Remove threadId from memory request classMitch Hayenga
In general, the ThreadID parameter is unnecessary in the memory system as the ContextID is what is used for the purposes of locks/wakeups. Since we allocate sequential ContextIDs for each thread on MT-enabled CPUs, ThreadID is unnecessary as the CPUs can identify the requesting thread through sideband info (SenderState / LSQ entries) or ContextID offset from the base ContextID for a cpu. This is a re-spin of 20264eb after the revert (bd1c6789) and includes some fixes of that commit.
2016-04-06Revert power patch sets with unexpected interactionsAndreas Sandberg
The following patches had unexpected interactions with the current upstream code and have been reverted for now: e07fd01651f3: power: Add support for power models 831c7f2f9e39: power: Low-power idle power state for idle CPUs 4f749e00b667: power: Add power states to ClockedObject Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> --HG-- extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
2016-04-05mem: Remove threadId from memory request classMitch Hayenga
In general, the ThreadID parameter is unnecessary in the memory system as the ContextID is what is used for the purposes of locks/wakeups. Since we allocate sequential ContextIDs for each thread on MT-enabled CPUs, ThreadID is unnecessary as the CPUs can identify the requesting thread through sideband info (SenderState / LSQ entries) or ContextID offset from the base ContextID for a cpu.
2016-01-17cpu: remove unnecessary data ptr from O3 internal read() funcsSteve Reinhardt
The read() function merely initiates a memory read operation; the data doesn't arrive until the access completes and a response packet is received from the memory system. Thus there's no need to provide a data pointer; its existence is historical. Getting this pointer out of this internal o3 interface sets the stage for similar cleanup in the ExecContext interface. Also found that we were pointlessly setting the contents at this pointer on a store forward (the useful memcpy happens just a few lines below the deleted one).
2015-03-02mem: Split port retry for all different packet classesAndreas Hansson
This patch fixes a long-standing isue with the port flow control. Before this patch the retry mechanism was shared between all different packet classes. As a result, a snoop response could get stuck behind a request waiting for a retry, even if the send/recv functions were split. This caused message-dependent deadlocks in stress-test scenarios. The patch splits the retry into one per packet (message) class. Thus, sendTimingReq has a corresponding recvReqRetry, sendTimingResp has recvRespRetry etc. Most of the changes to the code involve simply clarifying what type of request a specific object was accepting. The biggest change in functionality is in the cache downstream packet queue, facing the memory. This queue was shared by requests and snoop responses, and it is now split into two queues, each with their own flow control, but the same physical MasterPort. These changes fixes the previously seen deadlocks.
2014-09-03cpu: Fix cache blocked load behavior in o3 cpuMitch Hayenga
This patch fixes the load blocked/replay mechanism in the o3 cpu. Rather than flushing the entire pipeline, this patch replays loads once the cache becomes unblocked. Additionally, deferred memory instructions (loads which had conflicting stores), when replayed would not respect the number of functional units (only respected issue width). This patch also corrects that. Improvements over 20% have been observed on a microbenchmark designed to exercise this behavior.
2014-06-21o3: split load & store queue full cases in renameBinh Pham
Check for free entries in Load Queue and Store Queue separately to avoid cases when load cannot be renamed due to full Store Queue and vice versa. This work was done while Binh was an intern at AMD Research.
2013-09-11cpu: Dynamically instantiate O3 CPU LSQUnitsJoel Hestness
Previously, the LSQ would instantiate MaxThreads LSQUnits in the body of it's object, but it would only initialize numThreads LSQUnits as specified by the user. This had the effect of leaving some LSQUnits uninitialized when the number of threads was less than MaxThreads, and when adding statistics to the LSQUnit that must be initialized, this caused the stats initialization check to fail. By dynamically instantiating LSQUnits, they are all initialized and this avoids uninitialized LSQUnits from floating around during runtime.
2013-01-07cpu: Rewrite O3 draining to avoid stopping in microcodeAndreas Sandberg
Previously, the O3 CPU could stop in the middle of a microcode sequence. This patch makes sure that the pipeline stops when it has committed a normal instruction or exited from a microcode sequence. Additionally, it makes sure that the pipeline has no instructions in flight when it is drained, which should make draining more robust. Draining is controlled in the commit stage, which checks if the next PC after a committed instruction is in microcode. If this isn't the case, it requests a squash of all instructions after that the instruction that just committed and immediately signals a drain stall to the fetch stage. The CPU then continues to execute until the pipeline and all associated buffers are empty.
2013-01-07cpu: Fix O3 LSQ debug dumping constness and formattingAndreas Sandberg
2012-12-06o3 cpu: remove some unused buggy functions in the lsqNathanael Premillieu
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2012-05-01MEM: Separate requests and responses for timing accessesAndreas Hansson
This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-04-14MEM: Separate snoops and normal memory requests/responsesAndreas Hansson
This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-01-31Merge with head, hopefully the last time for this batch.Gabe Black
2012-01-31clang: Enable compiling gem5 using clang 2.9 and 3.0Koan-Sin Tan
This patch adds the necessary flags to the SConstruct and SConscript files for compiling using clang 2.9 and later (on Ubuntu et al and OSX XCode 4.2), and also cleans up a bunch of compiler warnings found by clang. Most of the warnings are related to hidden virtual functions, comparisons with unsigneds >= 0, and if-statements with empty bodies. A number of mismatches between struct and class are also fixed. clang 2.8 is not working as it has problems with class names that occur in multiple namespaces (e.g. Statistics in kernel_stats.hh). clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which causes confusion between the container std::set and the function Packet::set, and this is currently addressed by not including the entire namespace std, but rather selecting e.g. "using std::vector" in the appropriate places.
2012-01-28Merge with the main repo.Gabe Black
--HG-- rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
2012-01-17CPU: Moving towards a more general port across CPU modelsAndreas Hansson
This patch performs minimal changes to move the instruction and data ports from specialised subclasses to the base CPU (to the largest degree possible). Ultimately it servers to make the CPU(s) have a well-defined interface to the memory sub-system.
2012-01-17MEM: Add port proxies instead of non-structural portsAndreas Hansson
Port proxies are used to replace non-structural ports, and thus enable all ports in the system to correspond to a structural entity. This has the advantage of accessing memory through the normal memory subsystem and thus allowing any constellation of distributed memories, address maps, etc. Most accesses are done through the "system port" that is used for loading binaries, debugging etc. For the entities that belong to the CPU, e.g. threads and thread contexts, they wrap the CPU data port in a port proxy. The following replacements are made: FunctionalPort > PortProxy TranslatingPort > SETranslatingPortProxy VirtualPort > FSTranslatingPortProxy --HG-- rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
2011-11-18SE/FS: Get rid of includes of config/full_system.hh.Gabe Black
2011-11-18SE/FS: Get rid of FULL_SYSTEM in the CPU directory.Gabe Black
2011-04-15includes: sort all includesNathan Binkert
2010-08-13CPU: Add readBytes and writeBytes functions to the exec contexts.Gabe Black
2010-02-12O3PCU: Split loads and stores that cross cache line boundaries.Timothy M. Jones
When each load or store is sent to the LSQ, we check whether it will cross a cache line boundary and, if so, split it in two. This creates two TLB translations and two memory requests. Care has to be taken if the first packet of a split load is sent but the second blocks the cache. Similarly, for a store, if the first packet cannot be sent, we must store the second one somewhere to retry later. This modifies the LSQSenderState class to record both packets in a split load or store. Finally, a new const variable, HasUnalignedMemAcc, is added to each ISA to indicate whether unaligned memory accesses are allowed. This is used throughout the changed code so that compiler can optimise away code dealing with split requests for ISAs that don't need them.
2009-05-26types: add a type for thread IDs and try to use it everywhereNathan Binkert
2008-11-02Add in Context IDs to the simulator. From now on, cpuId is almost never used,Lisa Hsu
the primary identifier for a hardware context should be contextId(). The concept of threads within a CPU remains, in the form of threadId() because sometimes you need to know which context within a cpu to manipulate.
2008-10-09eventq: convert all usage of events to use the new API.Nathan Binkert
For now, there is still a single global event queue, but this is necessary for making the steps towards a parallelized m5.
2008-08-11params: Convert the CPU objects to use the auto generated param structs.Nathan Binkert
A whole bunch of stuff has been converted to use the new params stuff, but the CPU wasn't one of them. While we're at it, make some things a bit more stylish. Most of the work was done by Gabe, I just cleaned stuff up a bit more at the end.
2008-06-28Backed out changeset 94a7bb476fca: caused memory leak.Steve Reinhardt
2008-06-21Generate more useful error messages for unconnected ports.Steve Reinhardt
Force all non-default ports to provide a name and an owner in the constructor.
2007-05-21Change getDeviceAddressRanges to use bool for snoop arg.Steve Reinhardt
--HG-- extra : convert_revision : 832e52ba80cbab2f5bb6d5b5977a499d41b4d638
2007-04-04Pass ISA-specific O3 CPU as a constructor parameter instead of using setCPU ↵Kevin Lim
functions. src/cpu/o3/alpha/cpu_impl.hh: Pass ISA-specific O3 CPU to FullO3CPU as a constructor parameter instead of using setCPU functions. --HG-- extra : convert_revision : 74f4b1f5fb6f95a56081f367cce7ff44acb5688a
2007-03-09Two fixes:Kevin Lim
1. Make sure connectMemPorts() only gets called when the CPU's peer gets changed. This is done by making setPeer() virtual, and overriding it in the CPU's ports. When it gets called on a CPU's port (dcache specifically), it calls the normal setPeer() function, and also connectMemPorts(). 2. Consolidate redundant code that handles switching in a CPU. src/cpu/base.cc: Move common code of switching over peers to base CPU. src/cpu/base.hh: Move common code of switching over peers to BaseCPU. src/cpu/o3/cpu.cc: Add in function that updates thread context's ports. Also use updated function to takeOverFrom() in BaseCPU. This gets rid of some repeated code. src/cpu/o3/cpu.hh: Include function to update thread context's memory ports. src/cpu/o3/lsq.hh: Add function to dcache port that will update the memory ports upon getting a new peer. Also include a function that will tell the CPU to update those memory ports. src/cpu/o3/lsq_impl.hh: Add function that will update the memory ports upon getting a new peer. src/cpu/simple/atomic.cc: src/cpu/simple/timing.cc: Add function that will update thread context's memory ports upon getting a new peer. Also use the new BaseCPU's take over from function. src/cpu/simple/atomic.hh: Add in function (and dcache port) that will allow the dcache to update memory ports when it gets assigned a new peer. src/cpu/simple/timing.hh: Add function that will update thread context's memory ports upon getting a new peer. src/mem/port.hh: Make setPeer virtual so that other classes can override it. --HG-- extra : convert_revision : 2050f1241dd2e83875d281cfc5ad5c6c8705fdaf
2006-12-15little fixes i noticed while searching for reason for address range issues ↵Lisa Hsu
(but these weren't the cause of the problem). RangeSize as a function takes a start address, and a SIZE, and will make the range (start, start+size-1) for you. src/cpu/memtest/memtest.hh: src/cpu/o3/fetch.hh: src/cpu/o3/lsq.hh: src/cpu/ozone/front_end.hh: src/cpu/ozone/lw_lsq.hh: src/cpu/simple/atomic.hh: src/cpu/simple/timing.hh: Fix RangeSize arguments src/dev/alpha/tsunami_cchip.cc: src/dev/alpha/tsunami_io.cc: src/dev/alpha/tsunami_pchip.cc: src/dev/baddev.cc: pioSize indicates SIZE, not a mask --HG-- extra : convert_revision : d385521fcfe58f8dffc8622260937e668a47a948
2006-11-13Make CPU models signal to update the snoop rangesRon Dreslinski
--HG-- extra : convert_revision : 717b62510f28a69af99453309fbbb458359eeb2a
2006-10-09Have cpus send snoop rangesRon Dreslinski
--HG-- extra : convert_revision : 2a1fba141e409ee1d7a0b69b5b21d236e3d4ce68
2006-07-13Move Dcache port creation from LSQUnit to LSQ in order to support Ron's ↵Kevin Lim
recent changes, and using the O3CPU in SMT mode. src/cpu/o3/lsq.hh: Update to have LSQ work with only one dcache port for all LSQ Units. LSQ has the dcache port, and the LSQ Units must tell the LSQ if the cache has become blocked. src/cpu/o3/lsq_impl.hh: Updates to have the LSQ work with only one dcache port for all LSQUnits. src/cpu/o3/lsq_unit.hh: src/cpu/o3/lsq_unit_impl.hh: Update for LSQ to create dcache port instead of LSQUnits. Now LSQUnits are given the dcache port from the LSQ, and also must check the LSQ if the cache is blocked prior to accessing the cache. --HG-- extra : convert_revision : 2708adbf323f4e7647dc0c1e31ef5bb4596b89f8
2006-07-07Support Ron's changes for hooking up ports.Kevin Lim
src/cpu/checker/cpu.hh: Now that BaseCPU is a MemObject, the checker must define this function. src/cpu/o3/cpu.cc: src/cpu/o3/cpu.hh: src/cpu/o3/fetch.hh: src/cpu/o3/iew.hh: src/cpu/o3/lsq.hh: src/cpu/o3/lsq_unit.hh: Implement getPort function so the connector can connect the ports properly. src/cpu/o3/fetch_impl.hh: src/cpu/o3/lsq_unit_impl.hh: The connector handles connecting the ports now. src/python/m5/objects/O3CPU.py: Add ports to the parameters. --HG-- extra : convert_revision : 0b1a216b9a5d0574e62165d7c6c242498104d918
2006-06-16Two updates that got combined into one ChangeSet accidentally. They're both ↵Kevin Lim
pretty simple so they shouldn't cause any trouble. First: Rename FullCPU and its variants in the o3 directory to O3CPU to differentiate from the old model, and also to specify it's an out of order model. Second: Include build options for selecting the Checker to be used. These options make sure if the Checker is being used there is a CPU that supports it also being compiled. SConstruct: Add in option USE_CHECKER to allow for not compiling in checker code. The checker is enabled through this option instead of through the CPU_MODELS list. However it's still necessary to treat the Checker like a CPU model, so it is appended onto the CPU_MODELS list if enabled. configs/test/test.py: Name change for DetailedCPU to DetailedO3CPU. Also include option for max tick. src/base/traceflags.py: Add in O3CPU trace flag. src/cpu/SConscript: Rename AlphaFullCPU to AlphaO3CPU. Only include checker sources if they're necessary. Also add a list of CPUs that support the Checker, and only allow the Checker to be compiled in if one of those CPUs are also being included. src/cpu/base_dyn_inst.cc: src/cpu/base_dyn_inst.hh: Rename typedef to ImplCPU instead of FullCPU, to differentiate from the old FullCPU. src/cpu/cpu_models.py: src/cpu/o3/alpha_cpu.cc: src/cpu/o3/alpha_cpu.hh: src/cpu/o3/alpha_cpu_builder.cc: src/cpu/o3/alpha_cpu_impl.hh: Rename AlphaFullCPU to AlphaO3CPU to differentiate from old FullCPU model. src/cpu/o3/alpha_dyn_inst.hh: src/cpu/o3/alpha_dyn_inst_impl.hh: src/cpu/o3/alpha_impl.hh: src/cpu/o3/alpha_params.hh: src/cpu/o3/commit.hh: src/cpu/o3/cpu.hh: src/cpu/o3/decode.hh: src/cpu/o3/decode_impl.hh: src/cpu/o3/fetch.hh: src/cpu/o3/iew.hh: src/cpu/o3/iew_impl.hh: src/cpu/o3/inst_queue.hh: src/cpu/o3/lsq.hh: src/cpu/o3/lsq_impl.hh: src/cpu/o3/lsq_unit.hh: src/cpu/o3/regfile.hh: src/cpu/o3/rename.hh: src/cpu/o3/rename_impl.hh: src/cpu/o3/rob.hh: src/cpu/o3/rob_impl.hh: src/cpu/o3/thread_state.hh: src/python/m5/objects/AlphaO3CPU.py: Rename FullCPU to O3CPU to differentiate from old FullCPU model. src/cpu/o3/commit_impl.hh: src/cpu/o3/cpu.cc: src/cpu/o3/fetch_impl.hh: src/cpu/o3/lsq_unit_impl.hh: Rename FullCPU to O3CPU to differentiate from old FullCPU model. Also #ifdef the checker code so it doesn't need to be included if it's not selected. --HG-- rename : src/cpu/checker/o3_cpu_builder.cc => src/cpu/checker/o3_builder.cc rename : src/cpu/checker/cpu_builder.cc => src/cpu/checker/ozone_builder.cc rename : src/python/m5/objects/AlphaFullCPU.py => src/python/m5/objects/AlphaO3CPU.py extra : convert_revision : 86619baf257b8b7c8955efd447eba56e0d7acd6a
2006-06-13Minor updates for stats.Kevin Lim
src/cpu/o3/commit_impl.hh: src/cpu/o3/fetch.hh: Update stats comments. src/cpu/o3/fetch_impl.hh: Differentiate stats. src/cpu/o3/iew.hh: src/cpu/o3/iew_impl.hh: src/cpu/o3/inst_queue.hh: src/cpu/o3/inst_queue_impl.hh: Update for stats. src/cpu/o3/lsq.hh: LSQ now has stats. src/cpu/o3/lsq_impl.hh: Register stats of all LSQ units. src/cpu/o3/lsq_unit.hh: src/cpu/o3/lsq_unit_impl.hh: Add in stats. --HG-- extra : convert_revision : 7672ecf3c02515b268c28d5a986af1432197654a
2006-06-09Removing of old code and adding in new comments.Kevin Lim
src/cpu/base_dyn_inst.cc: Clean up old functions, comments. src/cpu/o3/alpha_cpu_builder.cc: src/cpu/o3/alpha_params.hh: src/cpu/o3/cpu.hh: src/cpu/o3/fetch_impl.hh: src/cpu/o3/iew.hh: src/cpu/o3/iew_impl.hh: src/cpu/o3/lsq.hh: src/cpu/o3/lsq_impl.hh: src/cpu/o3/rename_impl.hh: src/cpu/ozone/lsq_unit.hh: src/cpu/ozone/lsq_unit_impl.hh: Remove old commented code. src/cpu/o3/fetch.hh: Remove old commented code, add in comments. src/cpu/o3/inst_queue_impl.hh: Move comment to better place. src/cpu/o3/lsq_unit.hh: Remove old commented code, add in new comments. src/cpu/o3/lsq_unit_impl.hh: Remove old commented code, rename variable. --HG-- extra : convert_revision : 8e79af9b4d3b3bdd0f55e4747c6ab64c9ad2f571
2006-06-07Update copyright.Kevin Lim
--HG-- extra : convert_revision : 8ad012b1acfe046e6a8a5fb064891d91dadeb2e0
2006-06-04Merge ktlim@zamp:/z/ktlim2/clean/m5-o3Kevin Lim
into zamp.eecs.umich.edu:/z/ktlim2/clean/newmem-merge src/cpu/checker/o3_cpu_builder.cc: src/cpu/o3/alpha_cpu.hh: src/cpu/o3/alpha_cpu_impl.hh: src/cpu/o3/alpha_dyn_inst_impl.hh: src/cpu/o3/bpred_unit.cc: src/cpu/o3/commit.hh: src/cpu/o3/fetch_impl.hh: src/cpu/o3/lsq_unit.hh: src/cpu/o3/lsq_unit_impl.hh: src/cpu/o3/thread_state.hh: Hand merge. --HG-- rename : cpu/activity.cc => src/cpu/activity.cc rename : cpu/activity.hh => src/cpu/activity.hh rename : cpu/base_dyn_inst.cc => src/cpu/base_dyn_inst.cc rename : cpu/checker/cpu.hh => src/cpu/checker/cpu.hh rename : cpu/checker/cpu_builder.cc => src/cpu/checker/cpu_builder.cc rename : cpu/checker/exec_context.hh => src/cpu/checker/exec_context.hh rename : cpu/checker/o3_cpu_builder.cc => src/cpu/checker/o3_cpu_builder.cc rename : cpu/o3/2bit_local_pred.cc => src/cpu/o3/2bit_local_pred.cc rename : cpu/o3/2bit_local_pred.hh => src/cpu/o3/2bit_local_pred.hh rename : cpu/o3/alpha_cpu.hh => src/cpu/o3/alpha_cpu.hh rename : cpu/o3/alpha_cpu_builder.cc => src/cpu/o3/alpha_cpu_builder.cc rename : cpu/o3/alpha_cpu_impl.hh => src/cpu/o3/alpha_cpu_impl.hh rename : cpu/o3/alpha_dyn_inst.hh => src/cpu/o3/alpha_dyn_inst.hh rename : cpu/o3/alpha_dyn_inst_impl.hh => src/cpu/o3/alpha_dyn_inst_impl.hh rename : cpu/o3/alpha_params.hh => src/cpu/o3/alpha_params.hh rename : cpu/o3/bpred_unit.cc => src/cpu/o3/bpred_unit.cc rename : cpu/o3/bpred_unit.hh => src/cpu/o3/bpred_unit.hh rename : cpu/o3/bpred_unit_impl.hh => src/cpu/o3/bpred_unit_impl.hh rename : cpu/o3/comm.hh => src/cpu/o3/comm.hh rename : cpu/o3/commit.hh => src/cpu/o3/commit.hh rename : cpu/o3/commit_impl.hh => src/cpu/o3/commit_impl.hh rename : cpu/o3/cpu.hh => src/cpu/o3/cpu.hh rename : cpu/o3/cpu_policy.hh => src/cpu/o3/cpu_policy.hh rename : cpu/o3/decode.hh => src/cpu/o3/decode.hh rename : cpu/o3/decode_impl.hh => src/cpu/o3/decode_impl.hh rename : cpu/o3/dep_graph.hh => src/cpu/o3/dep_graph.hh rename : cpu/o3/fetch.hh => src/cpu/o3/fetch.hh rename : cpu/o3/fetch_impl.hh => src/cpu/o3/fetch_impl.hh rename : cpu/o3/fu_pool.cc => src/cpu/o3/fu_pool.cc rename : cpu/o3/fu_pool.hh => src/cpu/o3/fu_pool.hh rename : cpu/o3/iew.hh => src/cpu/o3/iew.hh rename : cpu/o3/iew_impl.hh => src/cpu/o3/iew_impl.hh rename : cpu/o3/inst_queue.hh => src/cpu/o3/inst_queue.hh rename : cpu/o3/inst_queue_impl.hh => src/cpu/o3/inst_queue_impl.hh rename : cpu/o3/lsq.hh => src/cpu/o3/lsq.hh rename : cpu/o3/lsq_unit.hh => src/cpu/o3/lsq_unit.hh rename : cpu/o3/lsq_unit_impl.hh => src/cpu/o3/lsq_unit_impl.hh rename : cpu/o3/mem_dep_unit.hh => src/cpu/o3/mem_dep_unit.hh rename : cpu/o3/mem_dep_unit_impl.hh => src/cpu/o3/mem_dep_unit_impl.hh rename : cpu/o3/rename.hh => src/cpu/o3/rename.hh rename : cpu/o3/rename_impl.hh => src/cpu/o3/rename_impl.hh rename : cpu/o3/rename_map.hh => src/cpu/o3/rename_map.hh rename : cpu/o3/rob.hh => src/cpu/o3/rob.hh rename : cpu/o3/store_set.cc => src/cpu/o3/store_set.cc rename : cpu/o3/store_set.hh => src/cpu/o3/store_set.hh rename : cpu/o3/thread_state.hh => src/cpu/o3/thread_state.hh rename : cpu/o3/tournament_pred.cc => src/cpu/o3/tournament_pred.cc rename : cpu/o3/tournament_pred.hh => src/cpu/o3/tournament_pred.hh rename : cpu/ozone/cpu_builder.cc => src/cpu/ozone/cpu_builder.cc rename : cpu/ozone/ozone_impl.hh => src/cpu/ozone/ozone_impl.hh rename : cpu/ozone/simple_impl.hh => src/cpu/ozone/simple_impl.hh rename : cpu/ozone/simple_params.hh => src/cpu/ozone/simple_params.hh rename : python/m5/objects/AlphaFullCPU.py => src/python/m5/objects/AlphaFullCPU.py rename : python/m5/objects/OzoneCPU.py => src/python/m5/objects/OzoneCPU.py extra : convert_revision : b7be30474dd03dd3970e737a9d0489aeb2ead84f
2006-06-02Fixes to get compiling to work. This is mainly fixing up some includes; ↵Kevin Lim
changing functions within the XCs; changing MemReqPtrs to Requests or Packets where appropriate. Currently the O3 and Ozone CPUs do not work in the new memory system; I still need to fix up the ports to work and handle responses properly. This check-in is so that the merge between m5 and newmem is no longer outstanding. src/SConscript: Need to include FU Pool for new CPU model. I'll try to figure out a cleaner way to handle this in the future. src/base/traceflags.py: Include new traces flags, fix up merge mess up. src/cpu/SConscript: Include the base_dyn_inst.cc as one of othe sources. Don't compile the Ozone CPU for now. src/cpu/base.cc: Remove an extra } from the merge. src/cpu/base_dyn_inst.cc: Fixes to make compiling work. Don't instantiate the OzoneCPU for now. src/cpu/base_dyn_inst.hh: src/cpu/o3/2bit_local_pred.cc: src/cpu/o3/alpha_cpu_builder.cc: src/cpu/o3/alpha_cpu_impl.hh: src/cpu/o3/alpha_dyn_inst.hh: src/cpu/o3/alpha_params.hh: src/cpu/o3/bpred_unit.cc: src/cpu/o3/btb.hh: src/cpu/o3/commit.hh: src/cpu/o3/commit_impl.hh: src/cpu/o3/cpu.cc: src/cpu/o3/cpu.hh: src/cpu/o3/fetch.hh: src/cpu/o3/fetch_impl.hh: src/cpu/o3/free_list.hh: src/cpu/o3/iew.hh: src/cpu/o3/iew_impl.hh: src/cpu/o3/inst_queue.hh: src/cpu/o3/inst_queue_impl.hh: src/cpu/o3/regfile.hh: src/cpu/o3/sat_counter.hh: src/cpu/op_class.hh: src/cpu/ozone/cpu.hh: src/cpu/checker/cpu.cc: src/cpu/checker/cpu.hh: src/cpu/checker/exec_context.hh: src/cpu/checker/o3_cpu_builder.cc: src/cpu/ozone/cpu_impl.hh: src/mem/request.hh: src/cpu/o3/fu_pool.hh: src/cpu/o3/lsq.hh: src/cpu/o3/lsq_unit.hh: src/cpu/o3/lsq_unit_impl.hh: src/cpu/o3/thread_state.hh: src/cpu/ozone/back_end.hh: src/cpu/ozone/dyn_inst.cc: src/cpu/ozone/dyn_inst.hh: src/cpu/ozone/front_end.hh: src/cpu/ozone/inorder_back_end.hh: src/cpu/ozone/lw_back_end.hh: src/cpu/ozone/lw_lsq.hh: src/cpu/ozone/ozone_impl.hh: src/cpu/ozone/thread_state.hh: Fixes to get compiling to work. src/cpu/o3/alpha_cpu.hh: Fixes to get compiling to work. Float reg accessors have changed, as well as MemReqPtrs to RequestPtrs. src/cpu/o3/alpha_dyn_inst_impl.hh: Fixes to get compiling to work. Pass in the packet to the completeAcc function. Fix up syscall function. --HG-- rename : cpu/activity.cc => src/cpu/activity.cc rename : cpu/activity.hh => src/cpu/activity.hh rename : cpu/checker/cpu.cc => src/cpu/checker/cpu.cc rename : cpu/checker/cpu.hh => src/cpu/checker/cpu.hh rename : cpu/checker/cpu_builder.cc => src/cpu/checker/cpu_builder.cc rename : cpu/checker/exec_context.hh => src/cpu/checker/exec_context.hh rename : cpu/checker/o3_cpu_builder.cc => src/cpu/checker/o3_cpu_builder.cc rename : cpu/o3/dep_graph.hh => src/cpu/o3/dep_graph.hh rename : cpu/o3/fu_pool.cc => src/cpu/o3/fu_pool.cc rename : cpu/o3/fu_pool.hh => src/cpu/o3/fu_pool.hh rename : cpu/o3/lsq.cc => src/cpu/o3/lsq.cc rename : cpu/o3/lsq.hh => src/cpu/o3/lsq.hh rename : cpu/o3/lsq_impl.hh => src/cpu/o3/lsq_impl.hh rename : cpu/o3/lsq_unit.cc => src/cpu/o3/lsq_unit.cc rename : cpu/o3/lsq_unit.hh => src/cpu/o3/lsq_unit.hh rename : cpu/o3/lsq_unit_impl.hh => src/cpu/o3/lsq_unit_impl.hh rename : cpu/o3/scoreboard.cc => src/cpu/o3/scoreboard.cc rename : cpu/o3/scoreboard.hh => src/cpu/o3/scoreboard.hh rename : cpu/o3/thread_state.hh => src/cpu/o3/thread_state.hh rename : cpu/ozone/back_end.cc => src/cpu/ozone/back_end.cc rename : cpu/ozone/back_end.hh => src/cpu/ozone/back_end.hh rename : cpu/ozone/back_end_impl.hh => src/cpu/ozone/back_end_impl.hh rename : cpu/ozone/cpu_builder.cc => src/cpu/ozone/cpu_builder.cc rename : cpu/ozone/dyn_inst.cc => src/cpu/ozone/dyn_inst.cc rename : cpu/ozone/dyn_inst.hh => src/cpu/ozone/dyn_inst.hh rename : cpu/ozone/dyn_inst_impl.hh => src/cpu/ozone/dyn_inst_impl.hh rename : cpu/ozone/front_end.cc => src/cpu/ozone/front_end.cc rename : cpu/ozone/front_end.hh => src/cpu/ozone/front_end.hh rename : cpu/ozone/front_end_impl.hh => src/cpu/ozone/front_end_impl.hh rename : cpu/ozone/inorder_back_end.cc => src/cpu/ozone/inorder_back_end.cc rename : cpu/ozone/inorder_back_end.hh => src/cpu/ozone/inorder_back_end.hh rename : cpu/ozone/inorder_back_end_impl.hh => src/cpu/ozone/inorder_back_end_impl.hh rename : cpu/ozone/inst_queue.cc => src/cpu/ozone/inst_queue.cc rename : cpu/ozone/inst_queue.hh => src/cpu/ozone/inst_queue.hh rename : cpu/ozone/inst_queue_impl.hh => src/cpu/ozone/inst_queue_impl.hh rename : cpu/ozone/lsq_unit.cc => src/cpu/ozone/lsq_unit.cc rename : cpu/ozone/lsq_unit.hh => src/cpu/ozone/lsq_unit.hh rename : cpu/ozone/lsq_unit_impl.hh => src/cpu/ozone/lsq_unit_impl.hh rename : cpu/ozone/lw_back_end.cc => src/cpu/ozone/lw_back_end.cc rename : cpu/ozone/lw_back_end.hh => src/cpu/ozone/lw_back_end.hh rename : cpu/ozone/lw_back_end_impl.hh => src/cpu/ozone/lw_back_end_impl.hh rename : cpu/ozone/lw_lsq.cc => src/cpu/ozone/lw_lsq.cc rename : cpu/ozone/lw_lsq.hh => src/cpu/ozone/lw_lsq.hh rename : cpu/ozone/lw_lsq_impl.hh => src/cpu/ozone/lw_lsq_impl.hh rename : cpu/ozone/null_predictor.hh => src/cpu/ozone/null_predictor.hh rename : cpu/ozone/ozone_impl.hh => src/cpu/ozone/ozone_impl.hh rename : cpu/ozone/rename_table.cc => src/cpu/ozone/rename_table.cc rename : cpu/ozone/rename_table.hh => src/cpu/ozone/rename_table.hh rename : cpu/ozone/rename_table_impl.hh => src/cpu/ozone/rename_table_impl.hh rename : cpu/ozone/simple_impl.hh => src/cpu/ozone/simple_impl.hh rename : cpu/ozone/simple_params.hh => src/cpu/ozone/simple_params.hh rename : cpu/ozone/thread_state.hh => src/cpu/ozone/thread_state.hh rename : cpu/quiesce_event.cc => src/cpu/quiesce_event.cc rename : cpu/quiesce_event.hh => src/cpu/quiesce_event.hh rename : cpu/thread_state.hh => src/cpu/thread_state.hh rename : python/m5/objects/FUPool.py => src/python/m5/objects/FUPool.py rename : python/m5/objects/OzoneCPU.py => src/python/m5/objects/OzoneCPU.py rename : python/m5/objects/SimpleOzoneCPU.py => src/python/m5/objects/SimpleOzoneCPU.py extra : convert_revision : ca7f0fbf65ee1a70d482fb4eda9a1840c7f9b8f8