Age | Commit message (Collapse) | Author |
|
This patch does a large modification of the LSQ in the O3 model. The
main goal of the patch is to remove the 'an operation can be served with
one or two memory requests' assumption that is present in the LSQ
and the instruction with the req, reqLow, reqHigh triplet, and
generalising it to operations that can be addressed with one request,
and operations that require many requests, embodied in the
SingleDataRequest and the SplitDataRequest.
This modification has been done mimicking the minor model to an extent,
shifting the responsibilities of dealing with VtoP translation and
tracking the status and resources from the DynInst to the LSQ via the
LSQRequest. The LSQRequest models the information concerning the
operation, handles the creation of fragments for translation and request
as well as assembling/splitting the data accordingly.
With this modifications, the implementation of vector ISAs, particularly
on the memory side, become more rich, as the new model permits a
dissociation of the ISA characteristics as vector length, from the
microarchitectural characteristics that govern how contiguous loads are
executing, allowing exploration of different LSQ to DL1 bus widths to
understand the tradeoffs in complexity and performance.
Part of the complexities introduced stem from the fact that gem5 keeps a
large amount of metadata regarding, in particular, memory operations,
thus, when an instruction is squashed while some operation as TLB lookup
or cache access is ongoing, when the relevant structure communicates to
the LSQ that the operation is over, it tries to access some pieces of
data that should have died when the instruction is squashed, leading to
asserts, panics, or memory corruption. To ensure the correct behaviour,
the LSQRequest rely on assesing who is their owner, and self-destroying
if they detect their owner is done with the request, and there will be
no subsequent action. For example, in the case of an instruction
squashed whal the TLB is doing a walk to serve the translation, when the
translation is served by the TLB, the LSQRequest detects that the
instruction was squashed, and as the translation is done, no one else
expect to access its information, and therefore, it self-destructs.
Having destroyed the LSQRequest earlier, would lead to wrong behaviour
as the TLB walk may access some fields of it.
Additional authors:
- Gabor Dozsa <gabor.dozsa@arm.com>
Change-Id: I9578a1a3f6b899c390cdd886856a24db68ff7d0c
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13516
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
|
|
The smtLSQPolicy is a parameter in the o3 cpu that can have 3
different values. Previously this setting was done through a string
and a parser function would turn it into a c++ enum value. This
changeset turns the string into a python Param.ScopedEnum.
Change-Id: I82041b88bd914c5dc660058d9e3998e3114e7c35
Signed-off-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/15397
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
This patch changes two members from being raw pointers to being STL
containers. The reason behind, other than cleanlyness and arguable OO
best practices is that containers have more intronspections capabilities
than naked pointers do, as the size is known.
Using STL containers adds little overhead and eases the automation of
process during debugging (gdb).
Change-Id: I4d9d3eedafa8b5e50ac512ea93b458a4200229f2
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13126
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Neither assert(0) nor assert(false) give any hint as to why control
getting to them is bad, and their more descriptive versions,
assert(0 && "description") and assert(false && "description"), jury
rig assert to add an error message when the utility function panic()
already does that directly with better formatting options.
This change replaces that flavor of call to assert with panic, except
in the actual code which processes the formatting that panic uses (to
avoid infinitely recurring error handling), and in some *.sm files
since I don't know what rules those have to follow and don't want to
accidentaly break them.
Change-Id: I8addfbfaf77eaed94ec8191f2ae4efb477cefdd0
Reviewed-on: https://gem5-review.googlesource.com/c/14636
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Summary: Usage of const DynInstPtr& when possible and introduction of
move operators to RefCountingPtr.
In many places, scoped references to dynamic instructions do a copy of
the DynInstPtr when a reference would do. This is detrimental to
performance. On top of that, in case there is a need for reference
tracking for debugging, the redundant copies make the process much more
painful than it already is.
Also, from the theoretical point of view, a function/method that
defines a convenience name to access an instruction should not be
considered an owner of the data, i.e., doing a copy and not a reference
is not justified.
On a related topic, C++11 introduces move semantics, and those are
useful when, for example, there is a class modelling a HW structure that
contains a list, and has a getHeadOfList function, to prevent doing a
copy to an internal variable -> update pointer, remove from the list ->
update pointer, return value making a copy to the assined variable ->
update pointer, destroy the returned value -> update pointer.
Change-Id: I3bb46c20ef23b6873b469fd22befb251ac44d2f6
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13105
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
This patch is changing the underlying type for RequestPtr from Request*
to shared_ptr<Request>. Having memory requests being managed by smart
pointers will simplify the code; it will also prevent memory leakage and
dangling pointers.
Change-Id: I7749af38a11ac8eb4d53d8df1252951e0890fde3
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/10996
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
In general, the ThreadID parameter is unnecessary in the memory system
as the ContextID is what is used for the purposes of locks/wakeups.
Since we allocate sequential ContextIDs for each thread on MT-enabled
CPUs, ThreadID is unnecessary as the CPUs can identify the requesting
thread through sideband info (SenderState / LSQ entries) or ContextID
offset from the base ContextID for a cpu.
This is a re-spin of 20264eb after the revert (bd1c6789) and includes
some fixes of that commit.
|
|
The following patches had unexpected interactions with the current
upstream code and have been reverted for now:
e07fd01651f3: power: Add support for power models
831c7f2f9e39: power: Low-power idle power state for idle CPUs
4f749e00b667: power: Add power states to ClockedObject
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
--HG--
extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
|
|
In general, the ThreadID parameter is unnecessary in the memory system
as the ContextID is what is used for the purposes of locks/wakeups.
Since we allocate sequential ContextIDs for each thread on MT-enabled
CPUs, ThreadID is unnecessary as the CPUs can identify the requesting
thread through sideband info (SenderState / LSQ entries) or ContextID
offset from the base ContextID for a cpu.
|
|
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.
The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.
The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
|
|
In case the memory subsystem sends a combined response with invalidate
(e.g. ReadRespWithInvalidate), we cannot ignore the invalidate part
of the response.
If we were to ignore the invalidate part, under certain circumstances
this effectively leads to reordering of loads to the same address
which is not permitted under any memory consistency model implemented
in gem5.
Consider the case where a later load's address is computed before an
earlier load in program order, and is therefore sent to the memory
subsystem first. At some point the earlier load's address is computed
and in doing so correctly marks the later load as a
possibleLoadViolation. In the meantime some other node writes and
sends invalidations to all other nodes. The invalidation races with
the later load's ReadResp, and arrives before ReadResp and is
deferred. Upon receipt of the ReadResp, the response is changed to
ReadRespWithInvalidate, and sent to the CPU. If we ignore the
invalidate part of the packet, we let the later load read the old
value of the address. Eventually the earlier load's ReadResp arrives,
but with new data. As there was no invalidate snoop (sunk into the
ReadRespWithInvalidate), and if we did not process the invalidate of
the ReadRespWithInvalidate, we obtain a load reordering.
A similar scenario can be constructed where the earlier load's address
is computed after ReadRespWithInvalidate arrives for the younger
load. In this case hitExternalSnoop needs to be set to true on the
ReadRespWithInvalidate, so that upon knowing the address of the
earlier load, checkViolations will cause the later load to be
squashed.
Finally we must account for the case where both loads are sent to the
memory subsystem (reordered), a snoop invalidate arrives and correctly
sets the later loads fault to ReExec. However, before the CPU
processes the fault, the later load's ReadResp arrives and the
writeback discards the outstanding fault. We must add a check to
ensure that we do not skip any unprocessed faults.
|
|
Move the packet deallocations in the O3 CPU so that the completeDataAccess
deals only with the LSQ specific parts and the generic recvTimingResp frees the
packet in all other cases.
|
|
This patch fixes the load blocked/replay mechanism in the o3 cpu. Rather than
flushing the entire pipeline, this patch replays loads once the cache becomes
unblocked.
Additionally, deferred memory instructions (loads which had conflicting stores),
when replayed would not respect the number of functional units (only respected
issue width). This patch also corrects that.
Improvements over 20% have been observed on a microbenchmark designed to
exercise this behavior.
|
|
Check for free entries in Load Queue and Store Queue separately to
avoid cases when load cannot be renamed due to full Store Queue and
vice versa.
This work was done while Binh was an intern at AMD Research.
|
|
|
|
Previously, the LSQ would instantiate MaxThreads LSQUnits in the body of it's
object, but it would only initialize numThreads LSQUnits as specified by the
user. This had the effect of leaving some LSQUnits uninitialized when the
number of threads was less than MaxThreads, and when adding statistics to the
LSQUnit that must be initialized, this caused the stats initialization check to
fail. By dynamically instantiating LSQUnits, they are all initialized and this
avoids uninitialized LSQUnits from floating around during runtime.
|
|
Previously, the O3 CPU could stop in the middle of a microcode
sequence. This patch makes sure that the pipeline stops when it has
committed a normal instruction or exited from a microcode
sequence. Additionally, it makes sure that the pipeline has no
instructions in flight when it is drained, which should make draining
more robust.
Draining is controlled in the commit stage, which checks if the next
PC after a committed instruction is in microcode. If this isn't the
case, it requests a squash of all instructions after that the
instruction that just committed and immediately signals a drain stall
to the fetch stage. The CPU then continues to execute until the
pipeline and all associated buffers are empty.
|
|
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.
For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).
The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.
With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
|
|
This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.
Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.
Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.
Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.
The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.
In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
|
|
This patch continues the unification of how the different CPU models
create and share their instruction and data ports. Most importantly,
it forces every CPU to have an instruction and a data port, and gives
these ports explicit getters in the BaseCPU (getDataPort and
getInstPort). The patch helps in simplifying the code, make
assumptions more explicit, andfurther ease future patches related to
the CPU ports.
The biggest changes are in the in-order model (that was not modified
in the previous unification patch), which now moves the ports from the
CacheUnit to the CPU. It also distinguishes the instruction fetch and
load-store unit from the rest of the resources, and avoids the use of
indices and casting in favour of keeping track of these two units
explicitly (since they are always there anyways). The atomic, timing
and O3 model simply return references to their already existing ports.
|
|
This patch performs minimal changes to move the instruction and data
ports from specialised subclasses to the base CPU (to the largest
degree possible). Ultimately it servers to make the CPU(s) have a
well-defined interface to the memory sub-system.
|
|
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
Only create a memory ordering violation when the value could have changed
between two subsequent loads, instead of just when loads go out-of-order
to the same address. While not very common in the case of Alpha, with
an architecture with a hardware table walker this can happen reasonably
frequently beacuse a translation will miss and start a table walk and
before the CPU re-schedules the faulting instruction another one will
pass it to the same address (or cache block depending on the dendency
checking).
This patch has been tested with a couple of self-checking hand crafted
programs to stress ordering between two cores.
The performance improvement on SPEC benchmarks can be substantial (2-10%).
|
|
|
|
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
|
|
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
|
|
|
|
the primary identifier for a hardware context should be contextId(). The
concept of threads within a CPU remains, in the form of threadId() because
sometimes you need to know which context within a cpu to manipulate.
|
|
Fix the logic in the LSQ that determines if there are any stores to
write back. In the commit stage, check for thread specific writebacks
instead of just any writeback.
|
|
A whole bunch of stuff has been converted to use the new params stuff, but
the CPU wasn't one of them. While we're at it, make some things a bit
more stylish. Most of the work was done by Gabe, I just cleaned stuff up
a bit more at the end.
|
|
|
|
Force all non-default ports to provide a name and an
owner in the constructor.
|
|
--HG--
extra : convert_revision : cc73b9aaf73e9dacf52f3350fa591e67ca4ccee6
|
|
It should be cleared prior to the call to recvRetry.
Add extra DPRINTF statement for clearer debugging output.
--HG--
extra : convert_revision : e2332754743f42d60e159ac89f6fb0fd8b7f57f8
|
|
Atomic mode seems to work. Timing is closer but not there yet.
--HG--
extra : convert_revision : 0dea5c3d4b973d009e9d4a4c21b9cad15961d56f
|
|
functions.
src/cpu/o3/alpha/cpu_impl.hh:
Pass ISA-specific O3 CPU to FullO3CPU as a constructor parameter instead of using setCPU functions.
--HG--
extra : convert_revision : 74f4b1f5fb6f95a56081f367cce7ff44acb5688a
|
|
The removed ones were unnecessary. The commented out ones could be useful in the future, should this problem get fixed. See flyspray task #243.
src/cpu/o3/commit_impl.hh:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/inst_queue_impl.hh:
src/cpu/o3/lsq_impl.hh:
src/cpu/o3/lsq_unit_impl.hh:
src/cpu/o3/rename_impl.hh:
src/cpu/o3/rob_impl.hh:
Remove/comment out DPRINTFs that were causing a segfault.
--HG--
extra : convert_revision : b5aeda1c6300dfde5e0a3e9b8c4c5f6fa00b9862
|
|
1. Make sure connectMemPorts() only gets called when the CPU's peer gets changed. This is done by making setPeer() virtual, and overriding it in the CPU's ports. When it gets called on a CPU's port (dcache specifically), it calls the normal setPeer() function, and also connectMemPorts().
2. Consolidate redundant code that handles switching in a CPU.
src/cpu/base.cc:
Move common code of switching over peers to base CPU.
src/cpu/base.hh:
Move common code of switching over peers to BaseCPU.
src/cpu/o3/cpu.cc:
Add in function that updates thread context's ports.
Also use updated function to takeOverFrom() in BaseCPU. This gets rid of some repeated code.
src/cpu/o3/cpu.hh:
Include function to update thread context's memory ports.
src/cpu/o3/lsq.hh:
Add function to dcache port that will update the memory ports upon getting a new peer.
Also include a function that will tell the CPU to update those memory ports.
src/cpu/o3/lsq_impl.hh:
Add function that will update the memory ports upon getting a new peer.
src/cpu/simple/atomic.cc:
src/cpu/simple/timing.cc:
Add function that will update thread context's memory ports upon getting a new peer.
Also use the new BaseCPU's take over from function.
src/cpu/simple/atomic.hh:
Add in function (and dcache port) that will allow the dcache to update memory ports when it gets assigned a new peer.
src/cpu/simple/timing.hh:
Add function that will update thread context's memory ports upon getting a new peer.
src/mem/port.hh:
Make setPeer virtual so that other classes can override it.
--HG--
extra : convert_revision : 2050f1241dd2e83875d281cfc5ad5c6c8705fdaf
|
|
--HG--
extra : convert_revision : 6bbaaa88a608081eebf706ff30293f38729415aa
|
|
Also don't call (*activeThreads).end() over and over. Just
call activeThreads->end() once and save the result.
Make sure we always check that there are elements in the list
before we grab the first one.
--HG--
extra : convert_revision : d769d8ed52da99532d57a9bbc93e92ddf22b7e58
|
|
--HG--
extra : convert_revision : 717b62510f28a69af99453309fbbb458359eeb2a
|
|
--HG--
extra : convert_revision : 746bdf92334d220158eb0eb6bf113b4dcedbb354
|
|
?? doesn't compile in warn statements
Should have been false, where I had a true.
src/cpu/o3/lsq_impl.hh:
Apparently you can't have ?? in a warn statement (Something about trigraphs)
src/mem/cache/cache_impl.hh:
Forgot to signal atomic mode in snoopProbe
--HG--
extra : convert_revision : c75cb76e193e852284564993440c8ea39e6de426
|
|
Still a bug in atomic uni-coherence in FS.
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/lsq_impl.hh:
src/cpu/simple/atomic.cc:
src/cpu/simple/timing.cc:
Make CPU models handle coherence requests
src/mem/cache/base_cache.cc:
Properly signal coherence CSHRs
src/mem/cache/coherence/uni_coherence.cc:
Only deallocate once
--HG--
extra : convert_revision : c4533de421c371c5532ee505e3ecd451511f5c99
|
|
If the cpu needs to update any state when it gets a functional write (LSQ??)
then that code needs to be written.
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/lsq_impl.hh:
src/cpu/ozone/front_end_impl.hh:
src/cpu/ozone/lw_lsq_impl.hh:
src/cpu/simple/atomic.cc:
src/cpu/simple/timing.cc:
CPU's can recieve functional accesses, they need to determine if they need to do anything with them.
src/mem/bus.cc:
src/mem/bus.hh:
Make the fuctional path do the correct tye of snoop
--HG--
extra : convert_revision : 70d09f954b907a8aa9b8137579cd2b06e02ae2ff
|
|
Ozone CPU remains untested, but everything else compiles and runs.
src/arch/alpha/isa_traits.hh:
This got changed to the wrong version by accident.
src/cpu/base.cc:
Fix up progress event to not schedule itself if the interval is set to 0.
src/cpu/base.hh:
Fix up the CPU Progress Event to not print itself if it's set to 0. Also remove stats_reset_inst (something I added to m5 but isn't necessary here).
src/cpu/base_dyn_inst.hh:
src/cpu/checker/cpu.hh:
Remove float variable of instResult; it's always held within the double part now.
src/cpu/checker/cpu_impl.hh:
Use thread and not cpuXC.
src/cpu/o3/alpha/cpu_builder.cc:
src/cpu/o3/checker_builder.cc:
src/cpu/ozone/checker_builder.cc:
src/cpu/ozone/cpu_builder.cc:
src/python/m5/objects/BaseCPU.py:
Remove stats_reset_inst.
src/cpu/o3/commit_impl.hh:
src/cpu/ozone/lw_back_end_impl.hh:
Get TC, not XCProxy.
src/cpu/o3/cpu.cc:
Switch out updates from the version of m5 I have. Also remove serialize code that got added twice.
src/cpu/o3/iew_impl.hh:
src/cpu/o3/lsq_impl.hh:
src/cpu/thread_state.hh:
Remove code that was added twice.
src/cpu/o3/lsq_unit.hh:
Add back in stats that got lost in the merge.
src/cpu/o3/lsq_unit_impl.hh:
Use proper method to get flags. Also wake CPU if we're coming back from a cache miss.
src/cpu/o3/thread_context_impl.hh:
src/cpu/o3/thread_state.hh:
Support profiling.
src/cpu/ozone/cpu.hh:
Update to use proper typename.
src/cpu/ozone/cpu_impl.hh:
src/cpu/ozone/dyn_inst_impl.hh:
Updates for newmem.
src/cpu/ozone/lw_lsq_impl.hh:
Get flags correctly.
src/cpu/ozone/thread_state.hh:
Reorder constructor initialization, use tc.
src/sim/pseudo_inst.cc:
Allow for loading of symbol file. Be sure to use ThreadContext and not ExecContext.
--HG--
extra : convert_revision : c5657f84155807475ab4a1e20d944bb6f0d79d94
|
|
into zamp.eecs.umich.edu:/z/ktlim2/clean/o3-merge/newmem
configs/boot/micro_memlat.rcS:
configs/boot/micro_tlblat.rcS:
src/arch/alpha/ev5.cc:
src/arch/alpha/isa/decoder.isa:
src/arch/alpha/isa_traits.hh:
src/cpu/base.cc:
src/cpu/base.hh:
src/cpu/base_dyn_inst.hh:
src/cpu/checker/cpu.hh:
src/cpu/checker/cpu_impl.hh:
src/cpu/o3/alpha/cpu_impl.hh:
src/cpu/o3/alpha/params.hh:
src/cpu/o3/checker_builder.cc:
src/cpu/o3/commit_impl.hh:
src/cpu/o3/cpu.cc:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/inst_queue.hh:
src/cpu/o3/lsq.hh:
src/cpu/o3/lsq_impl.hh:
src/cpu/o3/lsq_unit.hh:
src/cpu/o3/lsq_unit_impl.hh:
src/cpu/o3/regfile.hh:
src/cpu/o3/rename_impl.hh:
src/cpu/o3/thread_state.hh:
src/cpu/ozone/checker_builder.cc:
src/cpu/ozone/cpu.hh:
src/cpu/ozone/cpu_impl.hh:
src/cpu/ozone/front_end.hh:
src/cpu/ozone/front_end_impl.hh:
src/cpu/ozone/lw_back_end.hh:
src/cpu/ozone/lw_back_end_impl.hh:
src/cpu/ozone/lw_lsq.hh:
src/cpu/ozone/lw_lsq_impl.hh:
src/cpu/ozone/thread_state.hh:
src/cpu/simple/base.cc:
src/cpu/simple_thread.cc:
src/cpu/simple_thread.hh:
src/cpu/thread_state.hh:
src/dev/ide_disk.cc:
src/python/m5/objects/O3CPU.py:
src/python/m5/objects/Root.py:
src/python/m5/objects/System.py:
src/sim/pseudo_inst.cc:
src/sim/pseudo_inst.hh:
src/sim/system.hh:
util/m5/m5.c:
Hand merge.
--HG--
rename : arch/alpha/ev5.cc => src/arch/alpha/ev5.cc
rename : arch/alpha/freebsd/system.cc => src/arch/alpha/freebsd/system.cc
rename : arch/alpha/isa/decoder.isa => src/arch/alpha/isa/decoder.isa
rename : arch/alpha/isa/mem.isa => src/arch/alpha/isa/mem.isa
rename : arch/alpha/isa_traits.hh => src/arch/alpha/isa_traits.hh
rename : arch/alpha/linux/system.cc => src/arch/alpha/linux/system.cc
rename : arch/alpha/system.cc => src/arch/alpha/system.cc
rename : arch/alpha/tru64/system.cc => src/arch/alpha/tru64/system.cc
rename : cpu/base.cc => src/cpu/base.cc
rename : cpu/base.hh => src/cpu/base.hh
rename : cpu/base_dyn_inst.hh => src/cpu/base_dyn_inst.hh
rename : cpu/checker/cpu.hh => src/cpu/checker/cpu.hh
rename : cpu/checker/cpu.cc => src/cpu/checker/cpu_impl.hh
rename : cpu/o3/alpha_cpu_builder.cc => src/cpu/o3/alpha/cpu_builder.cc
rename : cpu/checker/o3_cpu_builder.cc => src/cpu/o3/checker_builder.cc
rename : cpu/o3/commit_impl.hh => src/cpu/o3/commit_impl.hh
rename : cpu/o3/cpu.cc => src/cpu/o3/cpu.cc
rename : cpu/o3/fetch_impl.hh => src/cpu/o3/fetch_impl.hh
rename : cpu/o3/iew.hh => src/cpu/o3/iew.hh
rename : cpu/o3/iew_impl.hh => src/cpu/o3/iew_impl.hh
rename : cpu/o3/inst_queue.hh => src/cpu/o3/inst_queue.hh
rename : cpu/o3/inst_queue_impl.hh => src/cpu/o3/inst_queue_impl.hh
rename : cpu/o3/lsq_impl.hh => src/cpu/o3/lsq_impl.hh
rename : cpu/o3/lsq_unit.hh => src/cpu/o3/lsq_unit.hh
rename : cpu/o3/lsq_unit_impl.hh => src/cpu/o3/lsq_unit_impl.hh
rename : cpu/o3/mem_dep_unit_impl.hh => src/cpu/o3/mem_dep_unit_impl.hh
rename : cpu/o3/rename.hh => src/cpu/o3/rename.hh
rename : cpu/o3/rename_impl.hh => src/cpu/o3/rename_impl.hh
rename : cpu/o3/thread_state.hh => src/cpu/o3/thread_state.hh
rename : cpu/o3/tournament_pred.cc => src/cpu/o3/tournament_pred.cc
rename : cpu/o3/tournament_pred.hh => src/cpu/o3/tournament_pred.hh
rename : cpu/checker/cpu_builder.cc => src/cpu/ozone/checker_builder.cc
rename : cpu/ozone/cpu.hh => src/cpu/ozone/cpu.hh
rename : cpu/ozone/cpu_builder.cc => src/cpu/ozone/cpu_builder.cc
rename : cpu/ozone/cpu_impl.hh => src/cpu/ozone/cpu_impl.hh
rename : cpu/ozone/front_end.hh => src/cpu/ozone/front_end.hh
rename : cpu/ozone/front_end_impl.hh => src/cpu/ozone/front_end_impl.hh
rename : cpu/ozone/inorder_back_end_impl.hh => src/cpu/ozone/inorder_back_end_impl.hh
rename : cpu/ozone/inst_queue_impl.hh => src/cpu/ozone/inst_queue_impl.hh
rename : cpu/ozone/lw_back_end.hh => src/cpu/ozone/lw_back_end.hh
rename : cpu/ozone/lw_back_end_impl.hh => src/cpu/ozone/lw_back_end_impl.hh
rename : cpu/ozone/lw_lsq.hh => src/cpu/ozone/lw_lsq.hh
rename : cpu/ozone/lw_lsq_impl.hh => src/cpu/ozone/lw_lsq_impl.hh
rename : cpu/ozone/simple_params.hh => src/cpu/ozone/simple_params.hh
rename : cpu/ozone/thread_state.hh => src/cpu/ozone/thread_state.hh
rename : cpu/simple/cpu.cc => src/cpu/simple/base.cc
rename : cpu/cpu_exec_context.cc => src/cpu/simple_thread.cc
rename : cpu/thread_state.hh => src/cpu/thread_state.hh
rename : dev/ide_disk.hh => src/dev/ide_disk.hh
rename : python/m5/objects/BaseCPU.py => src/python/m5/objects/BaseCPU.py
rename : python/m5/objects/AlphaFullCPU.py => src/python/m5/objects/O3CPU.py
rename : python/m5/objects/OzoneCPU.py => src/python/m5/objects/OzoneCPU.py
rename : python/m5/objects/Root.py => src/python/m5/objects/Root.py
rename : python/m5/objects/System.py => src/python/m5/objects/System.py
rename : sim/eventq.hh => src/sim/eventq.hh
rename : sim/pseudo_inst.cc => src/sim/pseudo_inst.cc
rename : sim/pseudo_inst.hh => src/sim/pseudo_inst.hh
rename : sim/serialize.cc => src/sim/serialize.cc
rename : sim/stat_control.cc => src/sim/stat_control.cc
rename : sim/stat_control.hh => src/sim/stat_control.hh
rename : sim/system.hh => src/sim/system.hh
extra : convert_revision : 135d90e43f6cea89f9460ba4e23f4b0b85886e7d
|
|
src/cpu/o3/fetch_impl.hh:
Fix ordering so dereference works
src/cpu/o3/lsq_impl.hh:
Check to make sure we didn't squash already
src/cpu/o3/lsq_unit.hh:
Fix for counting squashed retrys in the WB count
src/cpu/o3/lsq_unit_impl.hh:
Make sure to set retryID for stores, and clear it appropriately
--HG--
extra : convert_revision : 689765a1baea7b36f13eb177d65e97b52b6da09f
|