Age | Commit message (Collapse) | Author |
|
isSyscall was originally created because during handling of a syscall in SE
mode the threadcontext had to be updated. However, in many places this is used
in FS mode (e.g. fault handlers) and the name doesn't make much sense. The
boolean actually stops gem5 from squashing speculative and non-committed state
when a write to a threadcontext happens, so re-name the variable to something
more appropriate
|
|
This patch addresses the comments and feedback on the preceding patch
that reworks the clocks and now more clearly shows where cycles
(relative cycle counts) are used to express time.
Instead of bumping the existing patch I chose to make this a separate
patch, merely to try and focus the discussion around a smaller set of
changes. The two patches will be pushed together though.
This changes done as part of this patch are mostly following directly
from the introduction of the wrapper class, and change enough code to
make things compile and run again. There are definitely more places
where int/uint/Tick is still used to represent cycles, and it will
take some time to chase them all down. Similarly, a lot of parameters
should be changed from Param.Tick and Param.Unsigned to
Param.Cycles.
In addition, the use of curTick is questionable as there should not be
an absolute cycle. Potential solutions can be built on top of this
patch. There is a similar situation in the o3 CPU where
lastRunningCycle is currently counting in Cycles, and is still an
absolute time. More discussion to be had in other words.
An additional change that would be appropriate in the future is to
perform a similar wrapping of Tick and probably also introduce a
Ticks class along with suitable operators for all these classes.
|
|
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files. Also merges with the SE/FS changes.
|
|
This patch is adding a clearer design intent to all objects that would
not be complete without a port proxy by making the proxies members
rathen than dynamically allocated. In essence, if NULL would not be a
valid value for the proxy, then we avoid using a pointer to make this
clear.
The same approach is used for the methods using these proxies, such as
loadSections, that now use references rather than pointers to better
reflect the fact that NULL would not be an acceptable value (in fact
the code would break and that is how this patch started out).
Overall the concept of "using a reference to express unconditional
composition where a NULL pointer is never valid" could be done on a
much broader scale throughout the code base, but for now it is only
done in the locations affected by the proxies.
|
|
|
|
Brings the CheckerCPU back to life to allow FS and SE checking of the
O3CPU. These changes have only been tested with the ARM ISA. Other
ISAs potentially require modification.
|
|
--HG--
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
|
|
|
|
|
|
|
|
SEV instructions were originally implemented to cause asynchronous squashes
via the generateTCSquash() function in the O3 pipeline when updating the
SEV_MAILBOX miscReg. This caused race conditions between CPUs in an MP system
that would lead to a pipeline either going inactive indefinitely or not being
able to commit squashed instructions. Fixed SEV instructions to behave like
interrupts and cause synchronous sqaushes inside the pipeline, eliminating
the race conditions. Also fixed up the semantics of the WFE instruction to
behave as documented in the ARMv7 ISA description to not sleep if SEV_MAILBOX=1
or unmasked interrupts are pending.
|
|
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
|
|
This change fixes a small bug in the arm copyRegs() code where some registers
wouldn't be copied if the processor was in a mode other than MODE_USER.
Additionally, this change simplifies the way the O3 switchCpu code works by
utilizing TheISA::copyRegs() to copy the required context information
rather than the adhoc copying that goes on in the CPU model. The current code
makes assumptions about the visibility of int and float registers that aren't
true for all architectures in FS mode.
|
|
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
|
|
|
|
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.
PC type:
Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.
These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.
Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.
Advancing the PC:
The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.
One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.
Variable length instructions:
To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.
ISA parser:
To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.
Return address stack:
The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.
Change in stats:
There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.
TODO:
Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
|
|
This code is no longer needed because of the preceeding change which adds a
StaticInstPtr parameter to the fault's invoke method, obviating the only use
for this pair of functions.
|
|
the system pointers match in Full System mode.
|
|
|
|
This file is for register indices, Num* constants, and register types.
copyRegs and copyMiscRegs were moved to utility.hh and utility.cc.
--HG--
rename : src/arch/alpha/regfile.hh => src/arch/alpha/registers.hh
rename : src/arch/arm/regfile.hh => src/arch/arm/registers.hh
rename : src/arch/mips/regfile.hh => src/arch/mips/registers.hh
rename : src/arch/sparc/regfile.hh => src/arch/sparc/registers.hh
rename : src/arch/x86/regfile.hh => src/arch/x86/registers.hh
|
|
|
|
This object encapsulates (or will eventually) the identity and characteristics
of the ISA in the CPU.
|
|
|
|
Basically merge it in with Halted.
Also had to get rid of a few other functions that
called ThreadContext::deallocate(), including:
- InOrderCPU's setThreadRescheduleCondition.
- ThreadContext::exit(). This function was there to avoid terminating
simulation when one thread out of a multi-thread workload exits, but we
need to find a better (non-cpu-centric) way.
|
|
object.
|
|
There was really no reason that it should be FS only.
|
|
redundancies with threadId() as their replacement.
|
|
the primary identifier for a hardware context should be contextId(). The
concept of threads within a CPU remains, in the form of threadId() because
sometimes you need to know which context within a cpu to manipulate.
|
|
across the subclasses. generally make it so that member data is _cpuId and
accessor functions are cpuId(). The ID val comes from the python (default -1 if
none provided), and if it is -1, the index of cpuList will be given. this has
passed util/regress quick and se.py -n4 and fs.py -n4 as well as standard
switch.
|
|
|
|
|
|
|
|
Force all non-default ports to provide a name and an
owner in the constructor.
|
|
--HG--
extra : convert_revision : 16fb8d7f3fbc5f8f1fc3ed34427c3d90a3125ad0
|
|
"setShadowSet", "CacheOp"
--HG--
extra : convert_revision : a9ae8a7e62c27c2db16fd3cfa7a7f0bf5f0bf8ea
|
|
This is necssary for fault handlers that branch to non-zero micro PCs.
--HG--
extra : convert_revision : c1cb4863d779a9f4a508d0b450e64fb7a985f264
|
|
--HG--
extra : convert_revision : 940f92efd4a9dc59106e991cc6d9836861ab69de
|
|
--HG--
extra : convert_revision : 3702b4bd038a59bff823c3b428fdfbaabc9715df
|
|
--HG--
extra : convert_revision : f799b65f1b2a6bf43605e6870b0f39b473dc492b
|
|
into zower.eecs.umich.edu:/eecshome/m5/newmem
src/cpu/o3/commit_impl.hh:
Hand Merge
--HG--
extra : convert_revision : 6984db90d5b5ec71c31f1c345f5a77eed540059e
|
|
src/cpu/o3/thread_context_impl.hh:
Use flattened indices
src/cpu/simple_thread.hh:
Use flattened indices, and pass a thread context to setSyscallReturn rather than a register file.
src/cpu/thread_context.hh:
The SyscallReturn class is no longer in arch/syscallreturn.hh
--HG--
extra : convert_revision : ed84bb8ac5ef0774526ecd0d7270b0c60cd3708e
|
|
below the CPU to happen every time activateContext is called. The overhead is probably a little higher than necessary, but allows these connections to properly be made when there are CPUs that are inactive until they are switched in.
Right now this introduces a minor memory leak as old physPorts and virtPorts are not deleted when new ones are created. A flyspray task has been created for this issue. It can not be resolved until we determine how the bus will handle giving out ID's to functional ports that may be deleted.
src/cpu/o3/cpu.cc:
src/cpu/simple/atomic.cc:
src/cpu/simple/timing.cc:
Change the setup of the physPort and virtPort to instead happen every time the CPU has a context activated. This is a little high overhead, but keeps it working correctly when the CPU does not have a physical memory attached to it until it switches in (like the case of switch CPUs).
src/cpu/o3/thread_context.hh:
Change function from being called at init() to just being called whenever the memory ports need to be connected.
src/cpu/o3/thread_context_impl.hh:
Update this to not delete the port if it's the same as the virtPort.
src/cpu/thread_context.hh:
Change function from being called at init() to whenever the memory ports need to be connected.
src/cpu/thread_state.cc:
Instead of initializing the ports, simply connect them, deleting any old ports that might exist. This allows these functions to be called multiple times.
src/cpu/thread_state.hh:
Ports are no longer initialized, but rather connected at context activation time.
--HG--
extra : convert_revision : e399ce5dfbd6ad658c953a7c9c7b69b89a70219e
|
|
src/cpu/o3/alpha/cpu_impl.hh:
Handle the PhysicalPort and VirtualPort in the ThreadState.
src/cpu/o3/cpu.cc:
Initialize the thread context.
src/cpu/o3/thread_context.hh:
Add new function to initialize thread context.
src/cpu/o3/thread_context_impl.hh:
Use code now put into function.
src/cpu/simple_thread.cc:
Move code to ThreadState and use the new helper function.
src/cpu/simple_thread.hh:
Remove init() in this derived class; use init() from ThreadState base class.
src/cpu/thread_state.cc:
Move setting up of Physical and Virtual ports here. Change getMemFuncPort() to connectToMemFunc(), which connects a port to a functional port of the memory object below the CPU.
src/cpu/thread_state.hh:
Update functions.
--HG--
extra : convert_revision : ff254715ef0b259dc80d08f13543b63e4024ca8d
|
|
base kernel_stats to base_kernel_stats
--HG--
extra : convert_revision : 2a010d2eb7ea2586ff063b99b8bcde6eb1e8e017
|
|
file functions to not take faults
--HG--
extra : convert_revision : 1cef0734462ee2e4db12482462c2ab3c134d3675
|
|
has a bug.
src/cpu/o3/commit_impl.hh:
Fixes for compile and sampling.
src/cpu/o3/cpu.cc:
Deallocate and activate threads properly. Also hopefully fix being able to use caches while switching over.
src/cpu/o3/cpu.hh:
Fixes for deallocating and activating threads.
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/lsq_unit.hh:
Handle getting back a BadAddress result from the access.
src/cpu/o3/iew_impl.hh:
More debug output.
src/cpu/o3/lsq_unit_impl.hh:
Fixup store conditional handling (still a bit of a hack, but works now).
Also handle getting back a BadAddress result from the access.
src/cpu/o3/thread_context_impl.hh:
Deallocate context now records if the context should be fully removed.
--HG--
extra : convert_revision : 55f81660602d0e25367ce1f5b0b9cfc62abe7bf9
|
|
Ozone CPU remains untested, but everything else compiles and runs.
src/arch/alpha/isa_traits.hh:
This got changed to the wrong version by accident.
src/cpu/base.cc:
Fix up progress event to not schedule itself if the interval is set to 0.
src/cpu/base.hh:
Fix up the CPU Progress Event to not print itself if it's set to 0. Also remove stats_reset_inst (something I added to m5 but isn't necessary here).
src/cpu/base_dyn_inst.hh:
src/cpu/checker/cpu.hh:
Remove float variable of instResult; it's always held within the double part now.
src/cpu/checker/cpu_impl.hh:
Use thread and not cpuXC.
src/cpu/o3/alpha/cpu_builder.cc:
src/cpu/o3/checker_builder.cc:
src/cpu/ozone/checker_builder.cc:
src/cpu/ozone/cpu_builder.cc:
src/python/m5/objects/BaseCPU.py:
Remove stats_reset_inst.
src/cpu/o3/commit_impl.hh:
src/cpu/ozone/lw_back_end_impl.hh:
Get TC, not XCProxy.
src/cpu/o3/cpu.cc:
Switch out updates from the version of m5 I have. Also remove serialize code that got added twice.
src/cpu/o3/iew_impl.hh:
src/cpu/o3/lsq_impl.hh:
src/cpu/thread_state.hh:
Remove code that was added twice.
src/cpu/o3/lsq_unit.hh:
Add back in stats that got lost in the merge.
src/cpu/o3/lsq_unit_impl.hh:
Use proper method to get flags. Also wake CPU if we're coming back from a cache miss.
src/cpu/o3/thread_context_impl.hh:
src/cpu/o3/thread_state.hh:
Support profiling.
src/cpu/ozone/cpu.hh:
Update to use proper typename.
src/cpu/ozone/cpu_impl.hh:
src/cpu/ozone/dyn_inst_impl.hh:
Updates for newmem.
src/cpu/ozone/lw_lsq_impl.hh:
Get flags correctly.
src/cpu/ozone/thread_state.hh:
Reorder constructor initialization, use tc.
src/sim/pseudo_inst.cc:
Allow for loading of symbol file. Be sure to use ThreadContext and not ExecContext.
--HG--
extra : convert_revision : c5657f84155807475ab4a1e20d944bb6f0d79d94
|
|
--HG--
extra : convert_revision : 956c80d6d826b08e52c0892a480a0a9b74b96b9d
|