summaryrefslogtreecommitdiff
path: root/src/cpu/pred
AgeCommit message (Collapse)Author
2014-09-03cpu: fix bimodal predictor to use correct global history regDam Sunwoo
A small bug in the bimodal predictor caused significant degradation in performance on some benchmarks. This was caused by using the wrong globalHistoryReg during the update phase. This patches fixes the bug and brings the performance to normal level.
2014-09-03cpu: Fix incorrect speculative branch predictor behaviorMitch Hayenga
When a branch mispredicted gem5 would squash all history after and including the mispredicted branch. However, the mispredicted branch is still speculative and its history is required to rollback state if another, older, branch mispredicts. This leads to things like RAS corruption.
2014-08-13scons: Build the branch predictor for all CPUsAndreas Sandberg
The branch predictor is normally only built when a CPU that uses a branch predictor is built. The list of CPUs is currently incomplete as the simple CPUs support branch predictors (for warming, branch stats, etc). In practice, all CPU models now use branch predictors, so this changeset removes the CPU model check and replaces it with a check for the NULL ISA.
2014-08-13cpu: Modernise the branch predictor (STL and C++11)Andreas Hansson
This patch does some minor house keeping of the branch predictor by adopting STL containers, and shifting some iterator to use range-based for loops. The predictor history is also changed from a list to a deque as we never to insertion/deletion other than at the front and back.
2014-07-23cpu: `Minor' in-order CPU modelAndrew Bardsley
This patch contains a new CPU model named `Minor'. Minor models a four stage in-order execution pipeline (fetch lines, decompose into macroops, decompose macroops into microops, execute). The model was developed to support the ARM ISA but should be fixable to support all the remaining gem5 ISAs. It currently also works for Alpha, and regressions are included for ARM and Alpha (including Linux boot). Documentation for the model can be found in src/doc/inside-minor.doxygen and its internal operations can be visualised using the Minorview tool utils/minorview.py. Minor was designed to be fairly simple and not to engage in a lot of instruction annotation. As such, it currently has very few gathered stats and may lack other gem5 features. Minor is faster than the o3 model. Sample results: Benchmark | Stat host_seconds (s) ---------------+--------v--------v-------- (on ARM, opt) | simple | o3 | minor | timing | timing | timing ---------------+--------+--------+-------- 10.linux-boot | 169 | 1883 | 1075 10.mcf | 117 | 967 | 491 20.parser | 668 | 6315 | 3146 30.eon | 542 | 3413 | 2414 40.perlbmk | 2339 | 20905 | 11532 50.vortex | 122 | 1094 | 588 60.bzip2 | 2045 | 18061 | 9662 70.twolf | 207 | 2736 | 1036
2014-06-30cpu: implement a bi-mode branch predictorAnthony Gutierrez
2013-10-17cpu: add consistent guarding to *_impl.hh files.Matt Horsnell
2013-05-14cpu: remove local/globalHistoryBits params from branch predAnthony Gutierrez
having separate params for the local/globalHistoryBits and the local/globalPredictorSize can lead to inconsistencies if they are not carefully set. this patch dervies the number of bits necessary to index into the local/global predictors based on their size. the value of the localHistoryTableSize for the ARM O3 CPU has been increased to 1024 from 64, which is more accurate for an A15 based on some correlation against A15 hardware.
2013-01-24branch predictor: move out of o3 and inorder cpusNilay Vaish ext:(%2C%20Timothy%20Jones%20%3Ctimothy.jones%40cl.cam.ac.uk%3E)
This patch moves the branch predictor files in the o3 and inorder directories to src/cpu/pred. This allows sharing the branch predictor across different cpu models. This patch was originally posted by Timothy Jones in July 2010 but never made it to the repository. --HG-- rename : src/cpu/o3/bpred_unit.cc => src/cpu/pred/bpred_unit.cc rename : src/cpu/o3/bpred_unit.hh => src/cpu/pred/bpred_unit.hh rename : src/cpu/o3/bpred_unit_impl.hh => src/cpu/pred/bpred_unit_impl.hh rename : src/cpu/o3/sat_counter.hh => src/cpu/pred/sat_counter.hh
2012-12-06TournamentBP: Fix some bugs with table sizes and countersErik Tomusk
globalHistoryBits, globalPredictorSize, and choicePredictorSize are decoupled. globalHistoryBits controls how much history is kept, global and choice predictor sizes control how much of that history is used when accessing predictor tables. This way, global and choice predictors can actually be different sizes, and it is no longer possible to walk off the predictor arrays and cause a seg fault. There are now individual thresholds for choice, global, and local saturating counters, so that taken/not taken decisions are correct even when the predictors' counters' sizes are different. The interface for localPredictorSize has been removed from TournamentBP because the value can be calculated from localHistoryBits. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2012-11-02o3: Fix a couple of issues with the local predictor.Mrinmoy Ghosh
Fix some issues with the local predictor and the way it's indexed.
2012-02-13BPred: Fix RAS to handle predicated call/return instructions.Mrinmoy Ghosh
Change RAS to fix issues with predicated call/return instructions. Handled all cases in the life of a predicated call and return instruction.
2012-02-13BP: Fix several Branch Predictor issues.Mrinmoy Ghosh
1. Updates the Branch Predictor correctly to the state just after a mispredicted branch, if a squash occurs. 2. If a BTB does not find an entry, the branch is predicted not taken. The global history is modified to correctly reflect this prediction. 3. Local history is now updated at the fetch stage instead of execute stage. 4. In the Update stage of the branch predictor the local predictors are now correctly updated according to the state of local history during fetch stage. This patch also improves performance by as much as 17% on some benchmarks
2011-08-07O3: Fix uninitialized variable in the tournament branch predictor.Ali Saidi
2011-07-10Branch predictor: Fixes the tournament branch predictor.Mrinmoy Ghosh
Branch predictor could not predict a branch in a nested loop because: 1. The global history was not updated after a mispredict squash. 2. The global history was updated in the fetch stage. The choice predictors that were updated used the changed global history. This is incorrect, as it incorporates the state of global history after the branch in encountered. Fixed update to choice predictor using the global history state before the branch happened. 3. The global predictor table was also updated using the global history state before the branch happened as above. Additionally, parameters to initialize ctr and history size were reversed.
2011-06-02scons: rename TraceFlags to DebugFlagsNathan Binkert
2011-04-15trace: reimplement the DTRACE function so it doesn't use a vectorNathan Binkert
At the same time, rename the trace flags to debug flags since they have broader usage than simply tracing. This means that --trace-flags is now --debug-flags and --trace-help is now --debug-help
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-05-13BPRED: Fixed the treshold-bug in the tournament predictor.Maximilien Breughe
Suppose the saturating counters of a branch predictor contain n bits. When the counter is between 0 and (2^(n-1) - 1), boundaries included, the branch is predicted as not taken. When the counter is between 2^(n-1) and (2^n - 1), boundaries included, the branch is predicted as taken.
2009-06-04types: clean up types, especially signed vs unsignedNathan Binkert
2009-06-04move: put predictor includes and cc files into the same placeNathan Binkert
--HG-- rename : src/cpu/2bit_local_pred.cc => src/cpu/pred/2bit_local.cc rename : src/cpu/o3/2bit_local_pred.hh => src/cpu/pred/2bit_local.hh rename : src/cpu/btb.cc => src/cpu/pred/btb.cc rename : src/cpu/o3/btb.hh => src/cpu/pred/btb.hh rename : src/cpu/ras.cc => src/cpu/pred/ras.cc rename : src/cpu/o3/ras.hh => src/cpu/pred/ras.hh rename : src/cpu/tournament_pred.cc => src/cpu/pred/tournament.cc rename : src/cpu/o3/tournament_pred.hh => src/cpu/pred/tournament.hh