summaryrefslogtreecommitdiff
path: root/src/cpu/simple/atomic.cc
AgeCommit message (Collapse)Author
2018-06-11misc: Using smart pointers for memory RequestsGiacomo Travaglini
This patch is changing the underlying type for RequestPtr from Request* to shared_ptr<Request>. Having memory requests being managed by smart pointers will simplify the code; it will also prevent memory leakage and dangling pointers. Change-Id: I7749af38a11ac8eb4d53d8df1252951e0890fde3 Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/10996 Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com> Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
2018-06-11misc: Substitute pointer to Request with aliased RequestPtrGiacomo Travaglini
Every usage of Request* in the code has been replaced with the RequestPtr alias. This is a preparing patch for when RequestPtr will be the typdefed to a smart pointer to Request rather then a raw pointer to Request. Change-Id: I73cbaf2d96ea9313a590cdc731a25662950cd51a Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com> Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com> Reviewed-on: https://gem5-review.googlesource.com/10995 Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com> Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br> Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
2018-05-29cpu: Avoid unnecessary dynamic_pointer_cast in atomic modelGiacomo Travaglini
In the atomic model a dynamic_pointer_cast is performed at every tick to check if the fault is a SyscallRetryFault. This was happening even when there was no generated fault. Change-Id: I7f4afeffffdf4f988230e05286602d8d9a919c6c Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/10101 Reviewed-by: Brandon Potter <Brandon.Potter@amd.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2017-12-13arm,sparc,x86,base,cpu,sim: Replace the Twin(32|64)_t types with.Gabe Black
Replace them with std::array<>s. Change-Id: I76624c87a1cd9b21c386a96147a18de92b8a8a34 Reviewed-on: https://gem5-review.googlesource.com/6602 Maintainer: Gabe Black <gabeblack@google.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2017-12-05cpu: Add support for CMOs in the cpu modelsNikos Nikoleris
Cache maintenance operations go through the write channel of the cpu. This changes makes sure that the cpu does not try to fill in the packet with data. Change-Id: Ic83205bb1cda7967636d88f15adcb475eb38d158 Reviewed-by: Stephan Diestelhorst <stephan.diestelhorst@arm.com> Reviewed-on: https://gem5-review.googlesource.com/5055 Maintainer: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2017-11-21cpu, cpu, sim: move Cycle probe updateJose Marinho
Move the code responsible for performing the actual probe point notify into BaseCPU. Use BaseCPU activateContext and suspendContext to keep track of sleep cycles. Create a probe point (ppActiveCycles) that does not count cycles where the processor was asleep. Rename ppCycles to ppAllCycles to reflect its nature. Change-Id: I1907ddd07d0ff9f2ef22cc9f61f5f46c630c9d66 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/5762 Maintainer: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
2017-11-20pwr: Adds logic to enter power gating for the cpu modelAnouk Van Laer
If the CPU has been clock gated for a sufficient amount of time (configurable via pwrGatingLatency), the CPU will go into the OFF power state. This does not model hardware, just behaviour. Change-Id: Ib3681d1ffa6ad25eba60f47b4020325f63472d43 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/3969 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2017-07-12cpu: Refactor some Event subclasses to lambdasSean Wilson
Change-Id: If765c6100d67556f157e4e61aa33c2b7eeb8d2f0 Signed-off-by: Sean Wilson <spwilson2@wisc.edu> Reviewed-on: https://gem5-review.googlesource.com/3923 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Jason Lowe-Power <jason@lowepower.com>
2015-07-20syscall_emul: [patch 13/22] add system call retry capabilityBrandon Potter
This changeset adds functionality that allows system calls to retry without affecting thread context state such as the program counter or register values for the associated thread context (when system calls return with a retry fault). This functionality is needed to solve problems with blocking system calls in multi-process or multi-threaded simulations where information is passed between processes/threads. Blocking system calls can cause deadlock because the simulator itself is single threaded. There is only a single thread servicing the event queue which can cause deadlock if the thread hits a blocking system call instruction. To illustrate the problem, consider two processes using the producer/consumer sharing model. The processes can use file descriptors and the read and write calls to pass information to one another. If the consumer calls the blocking read system call before the producer has produced anything, the call will block the event queue (while executing the system call instruction) and deadlock the simulation. The solution implemented in this changeset is to recognize that the system calls will block and then generate a special retry fault. The fault will be sent back up through the function call chain until it is exposed to the cpu model's pipeline where the fault becomes visible. The fault will trigger the cpu model to replay the instruction at a future tick where the call has a chance to succeed without actually going into a blocking state. In subsequent patches, we recognize that a syscall will block by calling a non-blocking poll (from inside the system call implementation) and checking for events. When events show up during the poll, it signifies that the call would not have blocked and the syscall is allowed to proceed (calling an underlying host system call if necessary). If no events are returned from the poll, we generate the fault and try the instruction for the thread context at a distant tick. Note that retrying every tick is not efficient. As an aside, the simulator has some multi-threading support for the event queue, but it is not used by default and needs work. Even if the event queue was completely multi-threaded, meaning that there is a hardware thread on the host servicing a single simulator thread contexts with a 1:1 mapping between them, it's still possible to run into deadlock due to the event queue barriers on quantum boundaries. The solution of replaying at a later tick is the simplest solution and solves the problem generally.
2016-11-09style: [patch 1/22] use /r/3648/ to reorganize includesBrandon Potter
2016-08-15cpu, arch: fix the type used for the request flagsNikos Nikoleris
Change-Id: I183b9942929c873c3272ce6d1abd4ebc472c7132 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
2016-06-06pwr: Low-power idle power state for idle CPUsDavid Guillen Fandos
Add functionality to the BaseCPU that will put the entire CPU into a low-power idle state whenever all threads in it are idle. Change-Id: I984d1656eb0a4863c87ceacd773d2d10de5cfd2b
2016-04-07mem: Remove threadId from memory request classMitch Hayenga
In general, the ThreadID parameter is unnecessary in the memory system as the ContextID is what is used for the purposes of locks/wakeups. Since we allocate sequential ContextIDs for each thread on MT-enabled CPUs, ThreadID is unnecessary as the CPUs can identify the requesting thread through sideband info (SenderState / LSQ entries) or ContextID offset from the base ContextID for a cpu. This is a re-spin of 20264eb after the revert (bd1c6789) and includes some fixes of that commit.
2016-04-06Revert power patch sets with unexpected interactionsAndreas Sandberg
The following patches had unexpected interactions with the current upstream code and have been reverted for now: e07fd01651f3: power: Add support for power models 831c7f2f9e39: power: Low-power idle power state for idle CPUs 4f749e00b667: power: Add power states to ClockedObject Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> --HG-- extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
2016-04-05mem: Remove threadId from memory request classMitch Hayenga
In general, the ThreadID parameter is unnecessary in the memory system as the ContextID is what is used for the purposes of locks/wakeups. Since we allocate sequential ContextIDs for each thread on MT-enabled CPUs, ThreadID is unnecessary as the CPUs can identify the requesting thread through sideband info (SenderState / LSQ entries) or ContextID offset from the base ContextID for a cpu.
2014-12-09power: Low-power idle power state for idle CPUsAkash Bagdia
Add functionality to the BaseCPU that will put the entire CPU into a low-power idle state whenever all threads in it are idle.
2015-07-19cpu: Fix LLSC atomic CPU wakeupKrishnendra Nathella
Writes to locked memory addresses (LLSC) did not wake up the locking CPU. This can lead to deadlocks on multi-core runs. In AtomicSimpleCPU, recvAtomicSnoop was checking if the incoming packet was an invalidation (isInvalidate) and only then handled a locked snoop. But, writes are seen instead of invalidates when running without caches (fast-forward configurations). As as simple fix, now handleLockedSnoop is also called even if the incoming snoop packet are from writes.
2016-02-06style: fix missing spaces in control statementsSteve Reinhardt
Result of running 'hg m5style --skip-all --fix-control -a'.
2016-01-17cpu. arch: add initiateMemRead() to ExecContext interfaceSteve Reinhardt
For historical reasons, the ExecContext interface had a single function, readMem(), that did two different things depending on whether the ExecContext supported atomic memory mode (i.e., AtomicSimpleCPU) or timing memory mode (all the other models). In the former case, it actually performed a memory read; in the latter case, it merely initiated a read access, and the read completion did not happen until later when a response packet arrived from the memory system. This led to some confusing things, including timing accesses being required to provide a pointer for the return data even though that pointer was only used in atomic mode. This patch splits this interface, adding a new initiateMemRead() function to the ExecContext interface to replace the timing-mode use of readMem(). For consistency and clarity, the readMemTiming() helper function in the ISA definitions is renamed to initiateMemRead() as well. For x86, where the access size is passed in explicitly, we can also get rid of the data parameter at this level. For other ISAs, where the access size is determined from the type of the data parameter, we have to keep the parameter for that purpose.
2015-09-30cpu,isa,mem: Add per-thread wakeup logicMitch Hayenga
Changes wakeup functionality so that only specific threads on SMT capable cpus are woken.
2015-09-30cpu: Add per-thread monitorsMitch Hayenga
Adds per-thread address monitors to support FullSystem SMT.
2015-09-30config,cpu: Add SMT support to Atomic and Timing CPUsMitch Hayenga
Adds SMT support to the "simple" CPU models so that they can be used with other SMT-supported CPUs. Example usage: this enables the TimingSimpleCPU to be used to warmup caches before swapping to detailed mode with the in-order or out-of-order based CPU models.
2015-07-07sim: Refactor and simplify the drain APIAndreas Sandberg
The drain() call currently passes around a DrainManager pointer, which is now completely pointless since there is only ever one global DrainManager in the system. It also contains vestiges from the time when SimObjects had to keep track of their child objects that needed draining. This changeset moves all of the DrainState handling to the Drainable base class and changes the drain() and drainResume() calls to reflect this. Particularly, the drain() call has been updated to take no parameters (the DrainManager argument isn't needed) and return a DrainState instead of an unsigned integer (there is no point returning anything other than 0 or 1 any more). Drainable objects should return either DrainState::Draining (equivalent to returning 1 in the old system) if they need more time to drain or DrainState::Drained (equivalent to returning 0 in the old system) if they are already in a consistent state. Returning DrainState::Running is considered an error. Drain done signalling is now done through the signalDrainDone() method in the Drainable class instead of using the DrainManager directly. The new call checks if the state of the object is DrainState::Draining before notifying the drain manager. This means that it is safe to call signalDrainDone() without first checking if the simulator has requested draining. The intention here is to reduce the code needed to implement draining in simple objects.
2015-04-03cpu: fix system total instructions accountingNikos Nikoleris
The totalInstructions counter is only incremented when the whole instruction is commited and not on every microop. It was incorrectly reset in atomic and timing cpus. Committed by: Nilay Vaish <nilay@cs.wisc.edu>"
2015-03-23mem: rename Locked/LOCKED to LockedRMW/LOCKED_RMWSteve Reinhardt
Makes x86-style locked operations even more distinct from LLSC operations. Using "locked" by itself should be obviously ambiguous now.
2015-02-11mem: restructure Packet cmd initialization a bit moreSteve Reinhardt
Refactor the way that specific MemCmd values are generated for packets. The new approach is a little more elegant in that we assign the right value up front, and it's also more amenable to non-heap-allocated Packet objects. Also replaced the code in the Minor model that was still doing it the ad-hoc way. This is basically a refinement of http://repo.gem5.org/gem5/rev/711eb0e64249.
2015-01-25sim: Clean up InstRecordAli Saidi
Track memory size and flags as well as add some comments and consts.
2015-01-20cpu: commit probe notification on every microop or macroopNikos Nikoleris
The ppCommit should notify the attached listener every time the cpu commits a microop or non microcoded insturction. The listener can then decide whether it will process only the last microop (eg. SimPoint probe). Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-12-05cpu: Only check for PC events on instruction boundaries.Gabe Black
Only the instruction address is actually checked, so there's no need to check repeatedly while we're working through the microops of a macroop and that's not changing.
2014-12-02mem: Add const getters for write packet dataAndreas Hansson
This patch takes a first step in tightening up how we use the data pointer in write packets. A const getter is added for the pointer itself (getConstPtr), and a number of member functions are also made const accordingly. In a range of places throughout the memory system the new member is used. The patch also removes the unused isReadWrite function.
2014-11-14arm: Fixes based on UBSan and static analysisAndreas Hansson
Another churn to clean up undefined behaviour, mostly ARM, but some parts also touching the generic part of the code base. Most of the fixes are simply ensuring that proper intialisation. One of the more subtle changes is the return type of the sign-extension, which is changed to uint64_t. This is to avoid shifting negative values (undefined behaviour) in the ISA code.
2014-11-06x86 isa: This patch attempts an implementation at mwait.Marc Orr
Mwait works as follows: 1. A cpu monitors an address of interest (monitor instruction) 2. A cpu calls mwait - this loads the cache line into that cpu's cache. 3. The cpu goes to sleep. 4. When another processor requests write permission for the line, it is evicted from the sleeping cpu's cache. This eviction is forwarded to the sleeping cpu, which then wakes up. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-10-16cpu: Probe points for basic PMU statsAndreas Sandberg
This changeset adds probe points that can be used to implement PMU counters for CPU stats. The following probes are supported: * BaseCPU::ppCycles / Cycles * BaseCPU::ppRetiredInsts / RetiredInsts * BaseCPU::ppRetiredLoads / RetiredLoads * BaseCPU::ppRetiredStores / RetiredStores * BaseCPU::ppRetiredBranches RetiredBranches
2014-09-20alpha,arm,mips,power,x86,cpu,sim: Cleanup activate/deactivateMitch Hayenga
activate(), suspend(), and halt() used on thread contexts had an optional delay parameter. However this parameter was often ignored. Also, when used, the delay was seemily arbitrarily set to 0 or 1 cycle (no other delays were ever specified). This patch removes the delay parameter and 'Events' associated with them across all ISAs and cores. Unused activate logic is also removed.
2014-09-20cpu: use probes infrastructure to do simpoint profilingDam Sunwoo
Instead of having code embedded in cpu model to do simpoint profiling use the probes infrastructure to do it.
2014-05-13mem: Refactor assignment of Packet typesCurtis Dunham
Put the packet type swizzling (that is currently done in a lot of places) into a refineCommand() member function.
2014-01-24cpu: Add support for instructions that zero cache lines.Ali Saidi
2014-01-24cpu: Add CPU support for generatig wake up events when LLSC adresses are ↵Ali Saidi
snooped. This patch add support for generating wake-up events in the CPU when an address that is currently in the exclusive state is hit by a snoop. This mechanism is required for ARMv8 multi-processor support.
2014-01-24mem: per-thread cache occupancy and per-block agesDam Sunwoo
This patch enables tracking of cache occupancy per thread along with ages (in buckets) per cache blocks. Cache occupancy stats are recalculated on each stat dump.
2014-01-24cpu: remove faulty simpoint basic block inst count assertionDam Sunwoo
This patch removes an assertion in the simpoint profiling code that asserts that a previously-seen basic block has the exact same number of instructions executed as before. This can be false if the basic block generates aborts or takes interrupts at different locations within the basic block. The basic block profiling are not affected significantly as these events are rare in general.
2013-08-19cpu: Accurately count idle cycles for simple cpuLena Olson
Added a couple missing updates to the notIdleFraction stat. Without these, it sometimes gives a (not) idle fraction that is greater than 1 or less than 0.
2013-07-18mem: Set the cache line size on a system levelAndreas Hansson
This patch removes the notion of a peer block size and instead sets the cache line size on the system level. Previously the size was set per cache, and communicated through the interconnect. There were plenty checks to ensure that everyone had the same size specified, and these checks are now removed. Another benefit that is not yet harnessed is that the cache line size is now known at construction time, rather than after the port binding. Hence, the block size can be locally stored and does not have to be queried every time it is used. A follow-on patch updates the configuration scripts accordingly.
2013-04-22cpu: generate SimPoint basic block vector profilesDam Sunwoo
This patch is based on http://reviews.m5sim.org/r/1474/ originally written by Mitch Hayenga. Basic block vectors are generated (simpoint.bb.gz in simout folder) based on start and end addresses of basic blocks. Some comments to the original patch are addressed and hooks are added to create and resume from checkpoints based on instruction counts dictated by external SimPoint analysis tools. SimPoint creation/resuming options will be implemented as a separate patch.
2013-02-15sim: Add a system-global option to bypass cachesAndreas Sandberg
Virtualized CPUs and the fastmem mode of the atomic CPU require direct access to physical memory. We currently require caches to be disabled when using them to prevent chaos. This is not ideal when switching between hardware virutalized CPUs and other CPU models as it would require a configuration change on each switch. This changeset introduces a new version of the atomic memory mode, 'atomic_noncaching', where memory accesses are inserted into the memory system as atomic accesses, but bypass caches. To make memory mode tests cleaner, the following methods are added to the System class: * isAtomicMode() -- True if the memory mode is 'atomic' or 'direct'. * isTimingMode() -- True if the memory mode is 'timing'. * bypassCaches() -- True if caches should be bypassed. The old getMemoryMode() and setMemoryMode() methods should never be used from the C++ world anymore.
2013-02-15cpu: Refactor memory system checksAndreas Sandberg
CPUs need to test that the memory system is in the right mode in two places, when the CPU is initialized (unless it's switched out) and on a drainResume(). This led to some code duplication in the CPU models. This changeset introduces the verifyMemoryMode() method which is called by BaseCPU::init() if the CPU isn't switched out. The individual CPU models are responsible for calling this method when resuming from a drain as this code is CPU model specific.
2013-01-07cpu: Unify the serialization code for all of the CPU modelsAndreas Sandberg
Cleanup the serialization code for the simple CPUs and the O3 CPU. The CPU-specific code has been replaced with a (un)serializeThread that serializes the thread state / context of a specific thread. Assuming that the thread state class uses the CPU-specific thread state uses the base thread state serialization code, this allows us to restore a checkpoint with any of the CPU models.
2013-01-07cpu: Make sure that a drained atomic CPU isn't executing ucodeAndreas Sandberg
Currently, the atomic CPU can be in the middle of a microcode sequence when it is drained. This leads to two problems: * When switching to a hardware virtualized CPU, we obviously can't execute gem5 microcode. * Since curMacroStaticInst is populated when executing microcode, repeated switching between CPUs executing microcode leads to incorrect execution. After applying this patch, the CPU will be on a proper instruction boundary, which means that it is safe to switch to any CPU model (including hardware virtualized ones). This changeset fixes a bug where the multiple switches to the same atomic CPU sometimes corrupts the target state because of dangling pointers to the currently executing microinstruction. Note: This changeset moves tick event descheduling from switchOut() to drain(), which makes timing consistent between just draining a system and draining /and/ switching between two atomic CPUs. This makes debugging quite a lot easier (execution traces get the same timing), but the latency of the last instruction before a drain will not be accounted for correctly (it will always be 1 cycle). Note 2: This changeset removes so_state variable, the locked variable, and the tickEvent from checkpoints since none of them contain state that needs to be preserved across checkpoints. The so_state is made redundant because we don't use the drain state variable anymore, the lock variable should never be set when the system is drained, and the tick event isn't scheduled.
2013-01-07cpu: Rename defer_registration->switched_outAndreas Sandberg
The defer_registration parameter is used to prevent a CPU from initializing at startup, leaving it in the "switched out" mode. The name of this parameter (and the help string) is confusing. This patch renames it to switched_out, which should be more descriptive.
2013-01-07cpu: Correctly call parent on switchOut() and takeOverFrom()Andreas Sandberg
This patch cleans up the CPU switching functionality by making sure that CPU models consistently call the parent on switchOut() and takeOverFrom(). This has the following implications that might alter current functionality: * The call to BaseCPU::switchout() in the O3 CPU is moved from signalDrained() (!) to switchOut(). * A call to BaseSimpleCPU::switchOut() is introduced in the simple CPUs.
2013-01-07cpu: Check that the memory system is in the correct modeAndreas Sandberg
This patch adds checks to all CPU models to make sure that the memory system is in the correct mode at startup and when resuming after a drain. Previously, we only checked that the memory system was in the right mode when resuming. This is inadequate since this is a configuration error that should be detected at startup as well as when resuming. Additionally, since the check was done using an assert, it wasn't performed when NDEBUG was set (e.g., the fast target).