summaryrefslogtreecommitdiff
path: root/src/cpu/simple/base.cc
AgeCommit message (Collapse)Author
2011-02-06mcpat: Adds McPAT performance countersJoel Hestness
Updated patches from Rick Strong's set that modify performance counters for McPAT
2011-01-07Replace curTick global variable with accessor functions.Steve Reinhardt
This step makes it easy to replace the accessor functions (which still access a global variable) with ones that access per-thread curTick values.
2010-11-08ARM/Alpha/Cpu: Change prefetchs to be more like normal loads.Ali Saidi
This change modifies the way prefetches work. They are now like normal loads that don't writeback a register. Previously prefetches were supposed to call prefetch() on the exection context, so they executed with execute() methods instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs are blank, meaning that they get executed, but don't actually do anything. On Alpha dead cache copy code was removed and prefetches are now normal ops. They count as executed operations, but still don't do anything and IsMemRef is not longer set on them. On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch instructions. The timing simple CPU doesn't try to do anything special for prefetches now and they execute with the normal memory code path.
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-09-13CPU: Get rid of the now unnecessary getInst/setInst family of functions.Gabe Black
This code is no longer needed because of the preceeding change which adds a StaticInstPtr parameter to the fault's invoke method, obviating the only use for this pair of functions.
2010-09-13Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.Gabe Black
Also move the "Fault" reference counted pointer type into a separate file, sim/fault.hh. It would be better to name this less similarly to sim/faults.hh to reduce confusion, but fault.hh matches the name of the type. We could change Fault to FaultPtr to match other pointer types, and then changing the name of the file would make more sense.
2010-06-14stats: get rid of the never-really-used event stuffNathan Binkert
2010-06-03Minor remote GDB cleanup.Steve Reinhardt
Expand the help text on the --remote-gdb-port option so people know you can use it to disable remote gdb without reading the source code, and thus don't waste any time trying to add a separate option to do that. Clean up some gdb-related cruft I found while looking for where one would add a gdb disable option, before I found the comment that told me that I didn't need to do that.
2010-06-02ARM: Implement support for the IT instruction and the ITSTATE bits of CPSR.Gabe Black
2010-06-02CPU: Reset fetch offset after a exceptionAli Saidi
2010-06-02ARM: Make the predecoder handle Thumb instructions.Gabe Black
2010-03-23cpu: fix exec tracing memory corruption bugSteve Reinhardt
Accessing traceData (to call setAddress() and/or setData()) after initiating a timing translation was causing crashes, since a failed translation could delete the traceData object before returning. It turns out that there was never a need to access traceData after initiating the translation, as the traced data was always available earlier; this ordering was merely historical. Furthermore, traceData->setAddress() and traceData->setData() were being called both from the CPU model and the ISA definition, often redundantly. This patch standardizes all setAddress and setData calls for memory instructions to be in the CPU models and not in the ISA definition. It also moves those calls above the translation calls to eliminate the crashes.
2009-09-23arch: nuke arch/isa_specific.hh and move stuff to generated config/the_isa.hhNathan Binkert
2009-08-01Fix setting of INST_FETCH flag for O3 CPU.Steve Reinhardt
It's still broken in inorder. Also enhance DPRINTFs in cache and physical memory so we can see more easily whether it's getting set or not.
2009-07-08Get rid of the unused get(Data|Inst)Asid and (inst|data)Asid functions.Gabe Black
2009-06-04types: clean up types, especially signed vs unsignedNathan Binkert
2009-05-26types: add a type for thread IDs and try to use it everywhereNathan Binkert
2009-05-17includes: sort includes againNathan Binkert
2009-05-17types: Move stuff for global types into src/base/types.hhNathan Binkert
--HG-- rename : src/sim/host.hh => src/base/types.hh
2009-04-20request: rename INST_READ to INST_FETCH.Steve Reinhardt
2009-04-15Get rid of the Unallocated thread context state.Steve Reinhardt
Basically merge it in with Halted. Also had to get rid of a few other functions that called ThreadContext::deallocate(), including: - InOrderCPU's setThreadRescheduleCondition. - ThreadContext::exit(). This function was there to avoid terminating simulation when one thread out of a multi-thread workload exits, but we need to find a better (non-cpu-centric) way.
2009-02-26CPA: Add code to automatically record function symbols as CPU executes.Ali Saidi
2009-02-25CPU: Implement translateTiming which defers to translateAtomic, and convert ↵Gabe Black
the timing simple CPU to use it.
2009-02-25ISA: Replace the translate functions in the TLBs with translateAtomic.Gabe Black
2009-02-25CPU: Get rid of translate... functions from various interface classes.Gabe Black
2009-02-01CPU: Don't always reset the micro pc on faults. Let the faults handle it.Gabe Black
2009-02-01X86: Make sure the predecoder is cleared out for interrupts.Gabe Black
2009-01-24cpu: provide a wakeup mechanism that can be used to pull CPUs out of sleep.Nathan Binkert
Make interrupts use the new wakeup method, and pull all of the interrupt stuff into the cpu base class so that only the wakeup code needs to be updated. I tried to make wakeup, wakeCPU, and the various other mechanisms for waking and sleeping a little more sane, but I couldn't understand why the statistics were changing the way they were. Maybe we'll try again some day.
2009-01-06Tracing: Make tracing aware of macro and micro ops.Gabe Black
2008-10-21style: Use the correct m5 style for things relating to interrupts.Nathan Binkert
2008-10-12CPU: Make the highest order bit in the micro pc determine if it's ↵Gabe Black
combinational or from the ROM.
2008-10-12Turn Interrupts objects into SimObjects. Also, move local APIC state into ↵Gabe Black
x86's Interrupts object.
2008-08-11params: Convert the CPU objects to use the auto generated param structs.Nathan Binkert
A whole bunch of stuff has been converted to use the new params stuff, but the CPU wasn't one of them. While we're at it, make some things a bit more stylish. Most of the work was done by Gabe, I just cleaned stuff up a bit more at the end.
2008-07-01After a checkpoint (and thus a stats reset), the ↵Ali Saidi
not_idle_fraction/notIdleFraction statistic is really wrong. The notIdleFraction statistic isn't updated when the statistics reset, probably because the cpu Status information was pulled into the atomic and timing cpus. This changeset pulls Status back into the BaseSimpleCPU object. Anyone care to comment on the odd naming of the Status instance? It shouldn't just be status because that is confusing with Port::Status, but _status seems a bit strage too.
2008-02-14CPU: move the PC Events code to a place where the code won't be executed ↵Ali Saidi
multiple times if an instruction faults. --HG-- extra : convert_revision : 19c8e46a4eea206517be7ed4131ab9df0fe00e68
2007-12-16CPU: Update where the simple cpus read their cpu id from the thread context ↵Ali Saidi
to init() to make sure they read the right value. This fixes a bug with multi-processor full-system configurations. --HG-- extra : convert_revision : 4f2801967a271b43817d88e147c2f80c4480b2c3
2007-11-21imported patch pagewalker.patchGabe Black
--HG-- extra : convert_revision : 8ddde313f2249e1346fa51372a156f0d2ddc3b8f
2007-11-15Get MIPS simple regression working. Take out unecessary functions ↵Korey Sewell
"setShadowSet", "CacheOp" --HG-- extra : convert_revision : a9ae8a7e62c27c2db16fd3cfa7a7f0bf5f0bf8ea
2007-11-13Add in files from merge-bare-iron, get them compiling in FS and SE modeKorey Sewell
--HG-- extra : convert_revision : d4e19afda897bc3797868b40469ce2ec7ec7d251
2007-10-18CPU: Use the ThreadContext cpu id instead of the params cpu id in all cases.Ali Saidi
--HG-- extra : convert_revision : 6d025764682181b1f67df3b1d8d1d59099136df7
2007-10-02Merge with head.Gabe Black
--HG-- extra : convert_revision : 1aa0e4569a7c10e6a395c2c951ac29275b5bcf59
2007-10-02Predecoder: Clear out predecoder state on an ITLB fault.Gabe Black
--HG-- extra : convert_revision : 68f8ff778dbd28ade5070edf5a7d662e7bf0045a
2007-10-02CPU: Make the cpus check the pc event queues in SE mode.Gabe Black
--HG-- extra : convert_revision : 9dc4ea136c3c3f87a73d55e91bc4aae4eba70464
2007-09-24X86: Get X86_FS to compile.Gabe Black
--HG-- extra : convert_revision : fb973bcf13648876d5691231845dd47a2be50f01
2007-08-26Simple CPU: Make sure only instructions which complete without faulting are ↵Gabe Black
counted. --HG-- extra : convert_revision : 01019c7129ed762d8826c3e6519989aa3fc3b5fd
2007-08-26Address Translation: Make SE mode use an actual TLB/MMU for translation like FS.Gabe Black
--HG-- extra : convert_revision : a04a30df0b6246e877a1cea35420dbac94b506b1
2007-07-28Turn the instruction tracing code into pluggable sim objects.Gabe Black
These need to be refined a little still and given parameters. --HG-- extra : convert_revision : 9a8f5a7bd9dacbebbbd2c235cd890c49a81040d7
2007-07-23Major changes to how SimObjects are created and initialized. Almost allNathan Binkert
creation and initialization now happens in python. Parameter objects are generated and initialized by python. The .ini file is now solely for debugging purposes and is not used in construction of the objects in any way. --HG-- extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
2007-06-19Make branches work by repopulating the predecoder every time through. This ↵Gabe Black
is probably fine as far as the predecoder goes, but the simple cpu might want to not refetch something it already has. That reintroduces the self modifying code problem though. --HG-- extra : convert_revision : 802197e65f8dc1ad657c6b346091e03cb563b0c0
2007-06-14Modified instruction decode method.Vincentius Robby
Make code compatible with new decode method. src/arch/alpha/remote_gdb.cc: src/cpu/base_dyn_inst_impl.hh: src/cpu/exetrace.cc: src/cpu/simple/base.cc: Make code compatible with new decode method. src/cpu/static_inst.cc: src/cpu/static_inst.hh: Modified instruction decode method. --HG-- extra : convert_revision : a9a6d3a16fff59bc95d0606ea344bd57e71b8d0a