Age | Commit message (Collapse) | Author |
|
TheISA::initCPU is basically an ISA specific implementation of reset
logic on architectural state. As such, it only needs to be called if
we're not going to load a checkpoint, ie in initState.
Also, since the implementation was the same across all CPUs, this
change collapses all the individual implementations down into the base
CPU class.
Change-Id: Id68133fd7f31619c90bf7b3aad35ae20871acaa4
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/24189
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
It doesn't matter if the bytes are converted before or after they're
fed into the decoder. The ISA already knows what endianness to use
implicitly, and this frees the CPU which doesn't from having to worry
about it.
Change-Id: Id6574ee81bbf4f032c1d7b2901a664f2bd014fbc
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22343
Maintainer: Gabe Black <gabeblack@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This was useful when transitioning away from the CPU based
comInstEventQueue, but now that objects backing the ThreadContexts have
access to the underlying comInstEventQueue and can manipulate it
directly, they don't need to do so through a generic interface.
Getting rid of this function narrows and simplifies the interface.
Change-Id: I202d466d266551675ef6792d38c658d8a8f1cb8b
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22113
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
Also delete the CPU interface.
Change-Id: I62a6b0a9a303d672f4083bdedf393f9f6d07331f
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22109
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This lets us move the event queue itself around, or change how those
services are provided.
Change-Id: Ie36665b353cf9788968f253cf281a854a6eff4f4
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22107
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
The System keeps track of what events are live so new ThreadContexts
can have the same set of events as the other ThreadContexts.
Change-Id: Id22bfa0af7592a43d97be1564ca067b08ac1de7c
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22106
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
Both the thread and system's PCEventQueue are checked when appropriate.
Change-Id: I16c371339c91a37b5641860d974e546a30e23e13
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22105
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This prevents having to access it from within the ThreadContext.
Change-Id: I34f5815a11201b8fc41871c18bdbbcd0f40305cf
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/22102
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This was initially added in 2003 and only supported in the simple CPUs.
It's oddly specific since there are no other similar event queues for,
for instance, stores, branches, system calls, etc.
Given that this seems like a historical oddity which is only partially
supported and would be very hard to support on more diverse CPU types
like KVM or fast model which don't generally have hooks for counts of
specific instruction types.
Change-Id: I29209b7ffcf896cf424b71545c9c7546f439e2b9
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21780
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This queue was set up to allow triggering events based on the total
number of instructions executed at the system level, and was added in
a change which added a number of things to support McPAT. No code
checked into gem5 actually schedules an event on that queue, and no
code in McPAT (which seems to have gone dormant) either downloadable
from github or found in ext modify gem5 in a way that makes it use
the instEventQueue.
Also, the KVM CPU does not interact with the instEventQueue correctly.
While it does check the per-thread instruction event queue when
deciding how long to run, it does not check the instEventQueue. It will
poke it to run events when it stops for other reasons, but it may (and
likely will) have run beyond the point where it was supposed to stop.
Since this queue doesn't seem to actually be used for anything, isn't
being used properly in all cases anyway, and adds overhead to all the
CPU models, this change eliminates it.
Change-Id: I0e126df14788c37a6d58ca9e1bb2686b70e60d88
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/21783
Maintainer: Gabe Black <gabeblack@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Tiago Mück <tiago.muck@arm.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This changeset adds support for partial (or masked) loads/stores, i.e.
loads/stores that can disable accesses to individual bytes within the
target address range. In addition, this changeset extends the code to
crack memory accesses across most CPU models (TimingSimpleCPU still
TBD), so that arbitrarily wide memory accesses are supported. These
changes are required for supporting ISAs with wide vectors.
Additional authors:
- Gabor Dozsa <gabor.dozsa@arm.com>
- Tiago Muck <tiago.muck@arm.com>
Change-Id: Ibad33541c258ad72925c0b1d5abc3e5e8bf92d92
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/13518
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Then cast to the ISA specific type when necessary. This removes
(mostly) an ISA specific aspect to some of the interfaces. The ISA
specific version of the kernel stats still needs to be constructed and
stored in a few places which means that kernel_stats.hh still needs to
be a switching arch header, for instance.
In the future, I'd like to make the kernel its own object like the
Process objects in SE mode, and then it would be able to instantiate
and maintain its own stats.
Change-Id: I8309d49019124f6bea1482aaea5b5b34e8c97433
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18429
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
MemObject doesn't provide anything beyond its base ClockedObject any
more, so this change removes it from most inheritance hierarchies.
Occasionally MemObject is replaced with SimObject when I was fairly
confident that the extra functionality of ClockedObject wasn't needed.
Change-Id: Ic014ab61e56402e62548e8c831eb16e26523fdce
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18289
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Change-Id: I53f34b2d9db6e4d2e03dde42a970764bb2a5e701
Signed-off-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/17730
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
A probe is added to notify the address of each retired instruction.
Change-Id: Iefc1b09d74b3aa0aa5773b17ba637bf51f5a59c9
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/17632
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This patch enables all 4 CPU models (AtomicSimpleCPU, TimingSimpleCPU,
MinorCPU and DerivO3CPU) to issue atomic memory (AMO) requests to memory
system.
Atomic memory instruction is treated as a special store instruction in
all CPU models.
In simple CPUs, an AMO request with an associated AtomicOpFunctor is
simply sent to L1 dcache.
In MinorCPU, an AMO request bypasses store buffer and waits for any
conflicting store request(s) currently in the store buffer to retire
before the AMO request is sent to the cache. AMO requests are not buffered
in the store buffer, so their effects appear immediately in the cache.
In DerivO3CPU, an AMO request is inserted in the store buffer so that it
is delivered to the cache only after all previous stores are issued to
the cache. Data forwarding between between an outstanding AMO in the
store buffer and a subsequent load is not allowed since the AMO request
does not hold valid data until it's executed in the cache.
This implementation assumes that a target ISA implementation must insert
enough memory fences as micro-ops around an atomic instruction to
enforce a correct order of memory instructions with respect to its
memory consistency model. Without extra memory fences, this implementation
can allow AMOs and other memory instructions that do not conflict
(i.e., not target the same address) to reorder.
This implementation also assumes that atomic instructions execute within
a cache line boundary since the cache for now is not able to execute an
operation on two different cache lines in one single step. Therefore,
ISAs like x86 that require multi-cache-line atomic instructions need to
either use a pair of locking load and unlocking store or change the
cache implementation to guarantee the atomicity of an atomic
instruction.
Change-Id: Ib8a7c81868ac05b98d73afc7d16eb88486f8cf9a
Reviewed-on: https://gem5-review.googlesource.com/c/8188
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Now that there's no plain FloatReg, there's no reason to distinguish
FloatRegBits with a special suffix since it's the only way to read or
write FP registers.
Change-Id: I3a60168c1d4302aed55223ea8e37b421f21efded
Reviewed-on: https://gem5-review.googlesource.com/c/14460
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Use the binary accessors instead.
Change-Id: Iff1877e92c79df02b3d13635391a8c2f025776a2
Reviewed-on: https://gem5-review.googlesource.com/c/14457
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
This patch is changing the underlying type for RequestPtr from Request*
to shared_ptr<Request>. Having memory requests being managed by smart
pointers will simplify the code; it will also prevent memory leakage and
dangling pointers.
Change-Id: I7749af38a11ac8eb4d53d8df1252951e0890fde3
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/10996
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Every usage of Request* in the code has been replaced with the
RequestPtr alias. This is a preparing patch for when RequestPtr will be
the typdefed to a smart pointer to Request rather then a raw pointer to
Request.
Change-Id: I73cbaf2d96ea9313a590cdc731a25662950cd51a
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/10995
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Maintainer: Anthony Gutierrez <anthony.gutierrez@amd.com>
|
|
CPUs have historically instantiated the architecture specific version
of the TLBs to avoid a virtual function call, making them a little bit
more dependent on what the current ISA is. Some simple performance
measurement, the x86 twolf regression on the atomic CPU, shows that
there isn't actually any performance benefit, and if anything the
simulator goes slightly faster (although still within margin of error)
when the TLB functions are virtual.
This change switches everything outside of the architectures themselves
to use the generic BaseTLB type, and then inside the ISA for them to
cast that to their architecture specific type to call into architecture
specific interfaces.
The ARM TLB needed the most adjustment since it was using non-standard
translation function signatures. Specifically, they all took an extra
"type" parameter which defaulted to normal, and translateTiming
returned a Fault. translateTiming actually doesn't need to return a
Fault because everywhere that consumed it just stored it into a
structure which it then deleted(?), and the fault is stored in the
Translation object when the translation is done.
A little more work is needed to fully obviate the arch/tlb.hh header,
so the TheISA::TLB type is still visible outside of the ISAs.
Specifically, the TlbEntry type is used in the generic PageTable which
lives in src/mem.
Change-Id: I51b68ee74411f9af778317eff222f9349d2ed575
Reviewed-on: https://gem5-review.googlesource.com/6921
Maintainer: Gabe Black <gabeblack@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Print faulting instruction for unmapped address panic in faults.cc
and print extra info about corresponding fetched PC in base.cc.
Change-Id: Id9e15d3e88df2ad6b809fb3cf9f6ae97e9e97e0f
Reviewed-on: https://gem5-review.googlesource.com/6461
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
These files aren't a collection of miscellaneous stuff, they're the
definition of the Logger interface, and a few utility macros for
calling into that interface (panic, warn, etc.).
Change-Id: I84267ac3f45896a83c0ef027f8f19c5e9a5667d1
Reviewed-on: https://gem5-review.googlesource.com/6226
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
Move the code responsible for performing the actual probe point notify
into BaseCPU. Use BaseCPU activateContext and suspendContext to keep
track of sleep cycles. Create a probe point (ppActiveCycles) that does
not count cycles where the processor was asleep. Rename ppCycles
to ppAllCycles to reflect its nature.
Change-Id: I1907ddd07d0ff9f2ef22cc9f61f5f46c630c9d66
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5762
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Reiley's update :) of the isa parser definitions. My addition of the
vector element operand concept for the ISA parser. Nathanael's modification
creating a hierarchy between vector registers and its constituencies to the
isa parser.
Some fixes/updates on top to consider instructions as vectors instead of
floating when they use the VectorRF. Some counters added to all the
models to keep faithful counts.
Change-Id: Id8f162a525240dfd7ba884c5a4d9fa69f4050101
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2706
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This patch adds some more functionality to the cpu model and the arch to
interface with the vector register file.
This change consists mainly of augmenting ThreadContexts and ExecContexts
with calls to get/set full vectors, underlying microarchitectural elements
or lanes. Those are meant to interface with the vector register file. All
classes that implement this interface also get an appropriate implementation.
This requires implementing the vector register file for the different
models using the VecRegContainer class.
This change set also updates the Result abstraction to contemplate the
possibility of having a vector as result.
The changes also affect how the remote_gdb connection works.
There are some (nasty) side effects, such as the need to define dummy
numPhysVecRegs parameter values for architectures that do not implement
vector extensions.
Nathanael Premillieu's work with an increasing number of fixes and
improvements of mine.
Change-Id: Iee65f4e8b03abfe1e94e6940a51b68d0977fd5bb
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues and CC reg free list initialisation ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2705
|
|
|
|
Result of running 'hg m5style --skip-all --fix-control -a'.
|
|
Changes wakeup functionality so that only specific threads on SMT
capable cpus are woken.
|
|
Adds per-thread interrupt controllers and thread/context logic
so that interrupts properly get routed in SMT systems.
|
|
Adds per-thread address monitors to support FullSystem SMT.
|
|
Adds SMT support to the "simple" CPU models so that they can be
used with other SMT-supported CPUs. Example usage: this enables
the TimingSimpleCPU to be used to warmup caches before swapping to
detailed mode with the in-order or out-of-order based CPU models.
|
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
Another churn to clean up undefined behaviour, mostly ARM, but some
parts also touching the generic part of the code base.
Most of the fixes are simply ensuring that proper intialisation. One
of the more subtle changes is the return type of the sign-extension,
which is changed to uint64_t. This is to avoid shifting negative
values (undefined behaviour) in the ISA code.
|
|
Mwait works as follows:
1. A cpu monitors an address of interest (monitor instruction)
2. A cpu calls mwait - this loads the cache line into that cpu's cache.
3. The cpu goes to sleep.
4. When another processor requests write permission for the line, it is
evicted from the sleeping cpu's cache. This eviction is forwarded to the
sleeping cpu, which then wakes up.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This changeset adds probe points that can be used to implement PMU
counters for CPU stats. The following probes are supported:
* BaseCPU::ppCycles / Cycles
* BaseCPU::ppRetiredInsts / RetiredInsts
* BaseCPU::ppRetiredLoads / RetiredLoads
* BaseCPU::ppRetiredStores / RetiredStores
* BaseCPU::ppRetiredBranches RetiredBranches
|
|
The call paths for de-scheduling a thread are halt() and suspend(), from
the thread context. There is no call to deallocateContext() in general,
though some CPUs chose to define it. This patch removes the function
from BaseCPU and the cores which do not require it.
|
|
This patch changes how faults are passed between methods in an attempt
to copy as few reference-counting pointer instances as possible. This
should avoid unecessary copies being created, contributing to the
increment/decrement of the reference counters.
|
|
For the o3, add instruction mix (OpClass) histogram at commit (stats
also already collected at issue). For the simple CPUs we add a
histogram of executed instructions
|
|
This changesets adds branch predictor support to the
BaseSimpleCPU. The simple CPUs normally don't need a branch predictor,
however, there are at least two cases where it can be desirable:
1) A simple CPU can be used to warm the branch predictor of an O3
CPU before switching to the slower O3 model.
2) The simple CPU can be used as a quick way of evaluating/debugging
new branch predictors since it exposes branch predictor
statistics.
Limitations:
* Since the simple CPU doesn't speculate, only one instruction will
be active in the branch predictor at a time (i.e., the branch
predictor will never see speculative branches).
* The outcome of a branch prediction does not affect the performance
of the simple CPU.
|
|
Add a third register class for condition codes,
in parallel with the integer and FP classes.
No ISAs use the CC class at this point though.
|
|
|
|
The changes made by the changeset 9376 were not quite correct. The patch made
changes to the code which resulted in decoder not getting initialized correctly
when the state was restored from a checkpoint.
This patch adds a startup function to each ISA object. For x86, this function
sets the required state in the decoder. For other ISAs, the function is empty
right now.
|
|
Cleanup the serialization code for the simple CPUs and the O3 CPU. The
CPU-specific code has been replaced with a (un)serializeThread that
serializes the thread state / context of a specific thread. Assuming
that the thread state class uses the CPU-specific thread state uses
the base thread state serialization code, this allows us to restore a
checkpoint with any of the CPU models.
|
|
The ISA class on stores the contents of ID registers on many
architectures. In order to make reset values of such registers
configurable, we make the class inherit from SimObject, which allows
us to use the normal generated parameter headers.
This patch introduces a Python helper method, BaseCPU.createThreads(),
which creates a set of ISAs for each of the threads in an SMT
system. Although it is currently only needed when creating
multi-threaded CPUs, it should always be called before instantiating
the system as this is an obvious place to configure ID registers
identifying a thread/CPU.
|
|
This interface is no longer used, and getting rid of it simplifies the
decoders and code that sets up the decoders. The thread context had been used
to read architectural state which was used to contextualize the instruction
memory as it came in. That was changed so that the state is now sent to the
decoders to keep locally if/when it changes. That's significantly more
efficient.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.
In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.
--HG--
rename : src/base/range.hh => src/base/addr_range.hh
rename : src/base/range_map.hh => src/base/addr_range_map.hh
|
|
These classes are always used together, and merging them will give the ISAs
more flexibility in how they cache things and manage the process.
--HG--
rename : src/arch/x86/predecoder_tables.cc => src/arch/x86/decoder_tables.cc
|
|
Put the { on the same line as the if and put a space between the if and the
open paren. Also, use the # format modifier which puts a 0x in front of hex
values automatically. If the ExtMachInst type isn't integral and actually
prints something more complicated, the # falls away harmlessly and we aren't
left with a phantom 0x followed by a bunch of unrelated text.
|
|
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files. Also merges with the SE/FS changes.
|