summaryrefslogtreecommitdiff
path: root/src/cpu/simple/base.hh
AgeCommit message (Collapse)Author
2012-02-12cpu: add separate stats for insts/ops both globally and per cpu modelAnthony Gutierrez
2012-01-31Merge with head, hopefully the last time for this batch.Gabe Black
2012-01-31clang: Enable compiling gem5 using clang 2.9 and 3.0Koan-Sin Tan
This patch adds the necessary flags to the SConstruct and SConscript files for compiling using clang 2.9 and later (on Ubuntu et al and OSX XCode 4.2), and also cleans up a bunch of compiler warnings found by clang. Most of the warnings are related to hidden virtual functions, comparisons with unsigneds >= 0, and if-statements with empty bodies. A number of mismatches between struct and class are also fixed. clang 2.8 is not working as it has problems with class names that occur in multiple namespaces (e.g. Statistics in kernel_stats.hh). clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which causes confusion between the container std::set and the function Packet::set, and this is currently addressed by not including the entire namespace std, but rather selecting e.g. "using std::vector" in the appropriate places.
2012-01-31CheckerCPU: Re-factor CheckerCPU to be compatible with current gem5Geoffrey Blake
Brings the CheckerCPU back to life to allow FS and SE checking of the O3CPU. These changes have only been tested with the ARM ISA. Other ISAs potentially require modification.
2012-01-29Implement Ali's review feedback.Gabe Black
Try to decrease indentation, and remove some redundant FullSystem checks.
2011-11-01SE/FS: Expose the same methods on the CPUs in SE and FS modes.Gabe Black
2011-09-19Syscall: Make the syscall function available in both SE and FS modes.Gabe Black
In FS mode the syscall function will panic, but the interface will be consistent and code which calls syscall can be compiled in. This will allow, for instance, instructions that use syscall to be built unconditionally but then not returned by the decoder.
2011-09-09Decode: Pull instruction decoding out of the StaticInst class into its own.Gabe Black
This change pulls the instruction decoding machinery (including caches) out of the StaticInst class and puts it into its own class. This has a few intrinsic benefits. First, the StaticInst code, which has gotten to be quite large, gets simpler. Second, the code that handles decode caching is now separated out into its own component and can be looked at in isolation, making it easier to understand. I took the opportunity to restructure the code a bit which will hopefully also help. Beyond that, this change also lays some ground work for each ISA to have its own, potentially stateful decode object. We'd be able to include less contextualizing information in the ExtMachInst objects since that context would be applied at the decoder. Also, the decoder could "know" ahead of time that all the instructions it's going to see are going to be, for instance, 64 bit mode, and it will have one less thing to check when it decodes them. Because the decode caching mechanism has been separated out, it's now possible to have multiple caches which correspond to different types of decoding context. Having one cache for each element of the cross product of different configurations may become prohibitive, so it may be desirable to clear out the cache when relatively static state changes and not to have one for each setting. Because the decode function is no longer universally accessible as a static member of the StaticInst class, a new function was added to the ThreadContexts that returns the applicable decode object.
2011-05-04CPU: Fix a case where timing simple cpu faults can nest.Ali Saidi
If we fault, change the state to faulting so that we don't fault again in the same cycle.
2011-04-15includes: sort all includesNathan Binkert
2011-02-06mcpat: Adds McPAT performance countersJoel Hestness
Updated patches from Rick Strong's set that modify performance counters for McPAT
2010-12-07O3: Make all instructions that write a misc. register not perform the write ↵Giacomo Gabrielli
until commit. ARM instructions updating cumulative flags (ARM FP exceptions and saturation flags) are not serialized. Added aliases for ARM FP exceptions and saturation flags in FPSCR. Removed write accesses to the FP condition codes for most ARM VFP instructions: only VCMP and VCMPE instructions update the FP condition codes. Removed a potential cause of seg. faults in the O3 model for NEON memory macro-ops (ARM).
2010-11-15O3: Make O3 support variably lengthed instructions.Gabe Black
2010-11-08ARM/Alpha/Cpu: Change prefetchs to be more like normal loads.Ali Saidi
This change modifies the way prefetches work. They are now like normal loads that don't writeback a register. Previously prefetches were supposed to call prefetch() on the exection context, so they executed with execute() methods instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs are blank, meaning that they get executed, but don't actually do anything. On Alpha dead cache copy code was removed and prefetches are now normal ops. They count as executed operations, but still don't do anything and IsMemRef is not longer set on them. On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch instructions. The timing simple CPU doesn't try to do anything special for prefetches now and they execute with the normal memory code path.
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-08-31CPU: Get rid of the unused ev5_trap function on the simple and checker CPUs.Gabe Black
2010-08-23CPU: Make Exec trace to print predication result (if false) for memory ↵Min Kyu Jeong
instructions
2010-08-23ARM/O3: store the result of the predicate evaluation in DynInst or Threadstate.Min Kyu Jeong
THis allows the CPU to handle predicated-false instructions accordingly. This particular patch makes loads that are predicated-false to be sent straight to the commit stage directly, not waiting for return of the data that was never requested since it was predicated-false.
2010-06-03Minor remote GDB cleanup.Steve Reinhardt
Expand the help text on the --remote-gdb-port option so people know you can use it to disable remote gdb without reading the source code, and thus don't waste any time trying to add a separate option to do that. Clean up some gdb-related cruft I found while looking for where one would add a gdb disable option, before I found the comment that told me that I didn't need to do that.
2010-03-23cpu: fix exec tracing memory corruption bugSteve Reinhardt
Accessing traceData (to call setAddress() and/or setData()) after initiating a timing translation was causing crashes, since a failed translation could delete the traceData object before returning. It turns out that there was never a need to access traceData after initiating the translation, as the traced data was always available earlier; this ordering was merely historical. Furthermore, traceData->setAddress() and traceData->setData() were being called both from the CPU model and the ISA definition, often redundantly. This patch standardizes all setAddress and setData calls for memory instructions to be in the CPU models and not in the ISA definition. It also moves those calls above the translation calls to eliminate the crashes.
2009-09-23arch: nuke arch/isa_specific.hh and move stuff to generated config/the_isa.hhNathan Binkert
2009-07-08Registers: Get rid of the float register width parameter.Gabe Black
2009-05-26types: add a type for thread IDs and try to use it everywhereNathan Binkert
2009-03-05stats: Fix all stats usages to deal with template fixesNathan Binkert
2009-02-25CPU: Implement translateTiming which defers to translateAtomic, and convert ↵Gabe Black
the timing simple CPU to use it.
2009-01-24cpu: provide a wakeup mechanism that can be used to pull CPUs out of sleep.Nathan Binkert
Make interrupts use the new wakeup method, and pull all of the interrupt stuff into the cpu base class so that only the wakeup code needs to be updated. I tried to make wakeup, wakeCPU, and the various other mechanisms for waking and sleeping a little more sane, but I couldn't understand why the statistics were changing the way they were. Maybe we'll try again some day.
2008-11-02make BaseCPU the provider of _cpuId, and cpuId() instead of being scatteredLisa Hsu
across the subclasses. generally make it so that member data is _cpuId and accessor functions are cpuId(). The ID val comes from the python (default -1 if none provided), and if it is -1, the index of cpuList will be given. this has passed util/regress quick and se.py -n4 and fs.py -n4 as well as standard switch.
2008-10-21style: Use the correct m5 style for things relating to interrupts.Nathan Binkert
2008-10-20O3CPU: Undo Gabe's changes to remove hwrei and simpalcheck from O3 CPU. ↵Ali Saidi
Removing hwrei causes the instruction after the hwrei to be fetched before the ITB/DTB_CM register is updated in a call pal call sys and thus the translation fails because the user is attempting to access a super page address. Minimally, it seems as though some sort of fetch stall or refetch after a hwrei is required. I think this works currently because the hwrei uses the exec context interface, and the o3 stalls when that occurs. Additionally, these changes don't update the LOCK register and probably break ll/sc. Both o3 changes were removed since a great deal of manual patching would be required to only remove the hwrei change.
2008-10-11CPU: Eliminate the simPalCheck funciton.Gabe Black
2008-10-11CPU: Eliminate the hwrei function.Gabe Black
2008-09-10style: Remove non-leading tabs everywhere they shouldn't be. Developers ↵Ali Saidi
should configure their editors to not insert tabs
2008-08-11params: Convert the CPU objects to use the auto generated param structs.Nathan Binkert
A whole bunch of stuff has been converted to use the new params stuff, but the CPU wasn't one of them. While we're at it, make some things a bit more stylish. Most of the work was done by Gabe, I just cleaned stuff up a bit more at the end.
2008-07-01After a checkpoint (and thus a stats reset), the ↵Ali Saidi
not_idle_fraction/notIdleFraction statistic is really wrong. The notIdleFraction statistic isn't updated when the statistics reset, probably because the cpu Status information was pulled into the atomic and timing cpus. This changeset pulls Status back into the BaseSimpleCPU object. Anyone care to comment on the odd naming of the Status instance? It shouldn't just be status because that is confusing with Port::Status, but _status seems a bit strage too.
2008-02-26TLB: Make a TLB base class and put a virtual demapPage function in it.Gabe Black
--HG-- extra : convert_revision : cc0e62a5a337fd5bf332ad33bed61c0d505a936f
2008-02-14CPU: move the PC Events code to a place where the code won't be executed ↵Ali Saidi
multiple times if an instruction faults. --HG-- extra : convert_revision : 19c8e46a4eea206517be7ed4131ab9df0fe00e68
2007-11-15Get MIPS simple regression working. Take out unecessary functions ↵Korey Sewell
"setShadowSet", "CacheOp" --HG-- extra : convert_revision : a9ae8a7e62c27c2db16fd3cfa7a7f0bf5f0bf8ea
2007-11-13Add in files from merge-bare-iron, get them compiling in FS and SE modeKorey Sewell
--HG-- extra : convert_revision : d4e19afda897bc3797868b40469ce2ec7ec7d251
2007-10-18CPU: Use the ThreadContext cpu id instead of the params cpu id in all cases.Ali Saidi
--HG-- extra : convert_revision : 6d025764682181b1f67df3b1d8d1d59099136df7
2007-08-26Simple CPU: Make sure only instructions which complete without faulting are ↵Gabe Black
counted. --HG-- extra : convert_revision : 01019c7129ed762d8826c3e6519989aa3fc3b5fd
2007-08-26Address Translation: Make SE mode use an actual TLB/MMU for translation like FS.Gabe Black
--HG-- extra : convert_revision : a04a30df0b6246e877a1cea35420dbac94b506b1
2007-08-07X86: Make a microcode branch microop.Gabe Black
Also some touch up for ruflag. --HG-- extra : convert_revision : 829947169af25ca6573f53b9430707101c75cc23
2007-06-30Get rid of Packet result field. Error responses areSteve Reinhardt
now encoded in cmd field. --HG-- extra : convert_revision : d67819b7e3ee4b9a5bf08541104de0a89485e90b
2007-06-22mips import pt. 1Korey Sewell
src/arch/mips/SConscript: "mips import pt.1". --HG-- extra : convert_revision : 2e393341938bebf32fb638a209262d074fad4cc1
2007-06-13Seperate the pc-pc and the pc of the incoming bytes, and get rid of the ↵Gabe Black
"moreBytes" which just takes a MachInst. src/arch/x86/predecoder.cc: Seperate the pc-pc and the pc of the incoming bytes, and get rid of the "moreBytes" which just takes a MachInst. Also make the "opSize" field describe the number of bytes and not the log of the number of bytes. --HG-- extra : convert_revision : 3a5ec7053ec69c5cba738a475d8b7fd9e6e6ccc0
2007-05-18Changes to make simple cpu handle pcs appropriately for x86Gabe Black
--HG-- extra : convert_revision : cf68886d53301e0a63705247bd7d66b2ff08ea84
2007-03-15Merge zizzer.eecs.umich.edu:/bk/newmemGabe Black
into ahchoo.blinky.homelinux.org:/home/gblack/m5/newmem-x86 src/arch/mips/utility.hh: src/arch/x86/SConscript: Hand merge --HG-- extra : convert_revision : 0ba457aab52bf6ffc9191fd1fe1006ca7704b5b0
2007-03-15Make the predecoder an object with it's own switched header file. Start ↵Gabe Black
adding predecoding functionality to x86. src/arch/SConscript: src/arch/alpha/utility.hh: src/arch/mips/utility.hh: src/arch/sparc/utility.hh: src/cpu/base.hh: src/cpu/o3/fetch.hh: src/cpu/o3/fetch_impl.hh: src/cpu/simple/atomic.cc: src/cpu/simple/base.cc: src/cpu/simple/base.hh: src/cpu/static_inst.hh: src/arch/alpha/predecoder.hh: src/arch/mips/predecoder.hh: src/arch/sparc/predecoder.hh: Make the predecoder an object with it's own switched header file. --HG-- extra : convert_revision : 77206e29089130e86b97164c30022a062699ba86
2007-03-13Replaced makeExtMI with predecode.Gabe Black
Removed the getOpcode function from StaticInst which only made sense for Alpha. Started implementing the x86 predecoder. --HG-- extra : convert_revision : a13ea257c8943ef25e9bc573024a99abacf4a70d
2007-03-07I missed a couple of WithEffects, this should do itAli Saidi
--HG-- extra : convert_revision : 19fce78a19b27b7ccb5e3653a64b46e6d5292915