Age | Commit message (Collapse) | Author |
|
This patch changes how faults are passed between methods in an attempt
to copy as few reference-counting pointer instances as possible. This
should avoid unecessary copies being created, contributing to the
increment/decrement of the reference counters.
|
|
We currently generate and compile one version of the ISA code per CPU
model. This is obviously wasting a lot of resources at compile
time. This changeset factors out the interface into a separate
ExecContext class, which also serves as documentation for the
interface between CPUs and the ISA code. While doing so, this
changeset also fixes up interface inconsistencies between the
different CPU models.
The main argument for using one set of ISA code per CPU model has
always been performance as this avoid indirect branches in the
generated code. However, this argument does not hold water. Booting
Linux on a simulated ARM system running in atomic mode
(opt/10.linux-boot/realview-simple-atomic) is actually 2% faster
(compiled using clang 3.4) after applying this patch. Additionally,
compilation time is decreased by 35%.
|
|
For the o3, add instruction mix (OpClass) histogram at commit (stats
also already collected at issue). For the simple CPUs we add a
histogram of executed instructions
|
|
This changesets adds branch predictor support to the
BaseSimpleCPU. The simple CPUs normally don't need a branch predictor,
however, there are at least two cases where it can be desirable:
1) A simple CPU can be used to warm the branch predictor of an O3
CPU before switching to the slower O3 model.
2) The simple CPU can be used as a quick way of evaluating/debugging
new branch predictors since it exposes branch predictor
statistics.
Limitations:
* Since the simple CPU doesn't speculate, only one instruction will
be active in the branch predictor at a time (i.e., the branch
predictor will never see speculative branches).
* The outcome of a branch prediction does not affect the performance
of the simple CPU.
|
|
Add a third register class for condition codes,
in parallel with the integer and FP classes.
No ISAs use the CC class at this point though.
|
|
Make these names more meaningful.
Specifically, made these substitutions:
s/FP_Base_DepTag/FP_Reg_Base/g;
s/Ctrl_Base_DepTag/Misc_Reg_Base/g;
s/Max_DepTag/Max_Reg_Index/g;
|
|
The changes made by the changeset 9376 were not quite correct. The patch made
changes to the code which resulted in decoder not getting initialized correctly
when the state was restored from a checkpoint.
This patch adds a startup function to each ISA object. For x86, this function
sets the required state in the decoder. For other ISAs, the function is empty
right now.
|
|
Cleanup the serialization code for the simple CPUs and the O3 CPU. The
CPU-specific code has been replaced with a (un)serializeThread that
serializes the thread state / context of a specific thread. Assuming
that the thread state class uses the CPU-specific thread state uses
the base thread state serialization code, this allows us to restore a
checkpoint with any of the CPU models.
|
|
These classes are always used together, and merging them will give the ISAs
more flexibility in how they cache things and manage the process.
--HG--
rename : src/arch/x86/predecoder_tables.cc => src/arch/x86/decoder_tables.cc
|
|
--HG--
rename : src/cpu/decode.cc => src/arch/generic/decoder.cc
rename : src/cpu/decode.hh => src/arch/generic/decoder.hh
|
|
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files. Also merges with the SE/FS changes.
|
|
This patch continues the unification of how the different CPU models
create and share their instruction and data ports. Most importantly,
it forces every CPU to have an instruction and a data port, and gives
these ports explicit getters in the BaseCPU (getDataPort and
getInstPort). The patch helps in simplifying the code, make
assumptions more explicit, andfurther ease future patches related to
the CPU ports.
The biggest changes are in the in-order model (that was not modified
in the previous unification patch), which now moves the ports from the
CacheUnit to the CPU. It also distinguishes the instruction fetch and
load-store unit from the rest of the resources, and avoids the use of
indices and casting in favour of keeping track of these two units
explicitly (since they are always there anyways). The atomic, timing
and O3 model simply return references to their already existing ports.
|
|
|
|
|
|
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
|
|
Brings the CheckerCPU back to life to allow FS and SE checking of the
O3CPU. These changes have only been tested with the ARM ISA. Other
ISAs potentially require modification.
|
|
Try to decrease indentation, and remove some redundant FullSystem checks.
|
|
|
|
In FS mode the syscall function will panic, but the interface will be
consistent and code which calls syscall can be compiled in. This will allow,
for instance, instructions that use syscall to be built unconditionally but
then not returned by the decoder.
|
|
This change pulls the instruction decoding machinery (including caches) out of
the StaticInst class and puts it into its own class. This has a few intrinsic
benefits. First, the StaticInst code, which has gotten to be quite large, gets
simpler. Second, the code that handles decode caching is now separated out
into its own component and can be looked at in isolation, making it easier to
understand. I took the opportunity to restructure the code a bit which will
hopefully also help.
Beyond that, this change also lays some ground work for each ISA to have its
own, potentially stateful decode object. We'd be able to include less
contextualizing information in the ExtMachInst objects since that context
would be applied at the decoder. Also, the decoder could "know" ahead of time
that all the instructions it's going to see are going to be, for instance, 64
bit mode, and it will have one less thing to check when it decodes them.
Because the decode caching mechanism has been separated out, it's now possible
to have multiple caches which correspond to different types of decoding
context. Having one cache for each element of the cross product of different
configurations may become prohibitive, so it may be desirable to clear out the
cache when relatively static state changes and not to have one for each
setting.
Because the decode function is no longer universally accessible as a static
member of the StaticInst class, a new function was added to the ThreadContexts
that returns the applicable decode object.
|
|
If we fault, change the state to faulting so that we don't fault again in the same cycle.
|
|
|
|
Updated patches from Rick Strong's set that modify performance counters for
McPAT
|
|
until commit.
ARM instructions updating cumulative flags (ARM FP exceptions and saturation
flags) are not serialized.
Added aliases for ARM FP exceptions and saturation flags in FPSCR. Removed
write accesses to the FP condition codes for most ARM VFP instructions: only
VCMP and VCMPE instructions update the FP condition codes. Removed a potential
cause of seg. faults in the O3 model for NEON memory macro-ops (ARM).
|
|
|
|
This change modifies the way prefetches work. They are now like normal loads
that don't writeback a register. Previously prefetches were supposed to call
prefetch() on the exection context, so they executed with execute() methods
instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs
are blank, meaning that they get executed, but don't actually do anything.
On Alpha dead cache copy code was removed and prefetches are now normal ops.
They count as executed operations, but still don't do anything and IsMemRef is
not longer set on them.
On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch
instructions. The timing simple CPU doesn't try to do anything special for
prefetches now and they execute with the normal memory code path.
|
|
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.
PC type:
Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.
These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.
Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.
Advancing the PC:
The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.
One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.
Variable length instructions:
To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.
ISA parser:
To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.
Return address stack:
The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.
Change in stats:
There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.
TODO:
Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
|
|
|
|
instructions
|
|
THis allows the CPU to handle predicated-false instructions accordingly.
This particular patch makes loads that are predicated-false to be sent
straight to the commit stage directly, not waiting for return of the data
that was never requested since it was predicated-false.
|
|
Expand the help text on the --remote-gdb-port option so
people know you can use it to disable remote gdb without
reading the source code, and thus don't waste any time
trying to add a separate option to do that.
Clean up some gdb-related cruft I found while looking
for where one would add a gdb disable option, before
I found the comment that told me that I didn't need
to do that.
|
|
Accessing traceData (to call setAddress() and/or setData())
after initiating a timing translation was causing crashes,
since a failed translation could delete the traceData
object before returning.
It turns out that there was never a need to access traceData
after initiating the translation, as the traced data was
always available earlier; this ordering was merely
historical. Furthermore, traceData->setAddress() and
traceData->setData() were being called both from the CPU
model and the ISA definition, often redundantly.
This patch standardizes all setAddress and setData calls
for memory instructions to be in the CPU models and not
in the ISA definition. It also moves those calls above
the translation calls to eliminate the crashes.
|
|
|
|
|
|
|
|
|
|
the timing simple CPU to use it.
|
|
Make interrupts use the new wakeup method, and pull all of the interrupt
stuff into the cpu base class so that only the wakeup code needs to be updated.
I tried to make wakeup, wakeCPU, and the various other mechanisms for waking
and sleeping a little more sane, but I couldn't understand why the statistics
were changing the way they were. Maybe we'll try again some day.
|
|
across the subclasses. generally make it so that member data is _cpuId and
accessor functions are cpuId(). The ID val comes from the python (default -1 if
none provided), and if it is -1, the index of cpuList will be given. this has
passed util/regress quick and se.py -n4 and fs.py -n4 as well as standard
switch.
|
|
|
|
Removing hwrei causes
the instruction after the hwrei to be fetched before the ITB/DTB_CM register is updated in a call pal
call sys and thus the translation fails because the user is attempting to access a super page address.
Minimally, it seems as though some sort of fetch stall or refetch after a hwrei is required. I think
this works currently because the hwrei uses the exec context interface, and the o3 stalls when that occurs.
Additionally, these changes don't update the LOCK register and probably break ll/sc. Both o3 changes were
removed since a great deal of manual patching would be required to only remove the hwrei change.
|
|
|
|
|
|
should configure their editors to not insert tabs
|
|
A whole bunch of stuff has been converted to use the new params stuff, but
the CPU wasn't one of them. While we're at it, make some things a bit
more stylish. Most of the work was done by Gabe, I just cleaned stuff up
a bit more at the end.
|
|
not_idle_fraction/notIdleFraction statistic is really wrong.
The notIdleFraction statistic isn't updated when the statistics reset, probably because the cpu Status information
was pulled into the atomic and timing cpus. This changeset pulls Status back into the BaseSimpleCPU object. Anyone
care to comment on the odd naming of the Status instance? It shouldn't just be status because that is confusing
with Port::Status, but _status seems a bit strage too.
|
|
--HG--
extra : convert_revision : cc0e62a5a337fd5bf332ad33bed61c0d505a936f
|
|
multiple times if an instruction faults.
--HG--
extra : convert_revision : 19c8e46a4eea206517be7ed4131ab9df0fe00e68
|
|
"setShadowSet", "CacheOp"
--HG--
extra : convert_revision : a9ae8a7e62c27c2db16fd3cfa7a7f0bf5f0bf8ea
|
|
--HG--
extra : convert_revision : d4e19afda897bc3797868b40469ce2ec7ec7d251
|