summaryrefslogtreecommitdiff
path: root/src/cpu/simple
AgeCommit message (Collapse)Author
2016-06-06pwr: Low-power idle power state for idle CPUsDavid Guillen Fandos
Add functionality to the BaseCPU that will put the entire CPU into a low-power idle state whenever all threads in it are idle. Change-Id: I984d1656eb0a4863c87ceacd773d2d10de5cfd2b
2016-04-07mem: Remove threadId from memory request classMitch Hayenga
In general, the ThreadID parameter is unnecessary in the memory system as the ContextID is what is used for the purposes of locks/wakeups. Since we allocate sequential ContextIDs for each thread on MT-enabled CPUs, ThreadID is unnecessary as the CPUs can identify the requesting thread through sideband info (SenderState / LSQ entries) or ContextID offset from the base ContextID for a cpu. This is a re-spin of 20264eb after the revert (bd1c6789) and includes some fixes of that commit.
2016-04-06Revert power patch sets with unexpected interactionsAndreas Sandberg
The following patches had unexpected interactions with the current upstream code and have been reverted for now: e07fd01651f3: power: Add support for power models 831c7f2f9e39: power: Low-power idle power state for idle CPUs 4f749e00b667: power: Add power states to ClockedObject Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> --HG-- extra : amend_source : 0b6fb073c6bbc24be533ec431eb51fbf1b269508
2016-04-05mem: Remove threadId from memory request classMitch Hayenga
In general, the ThreadID parameter is unnecessary in the memory system as the ContextID is what is used for the purposes of locks/wakeups. Since we allocate sequential ContextIDs for each thread on MT-enabled CPUs, ThreadID is unnecessary as the CPUs can identify the requesting thread through sideband info (SenderState / LSQ entries) or ContextID offset from the base ContextID for a cpu.
2014-12-09power: Low-power idle power state for idle CPUsAkash Bagdia
Add functionality to the BaseCPU that will put the entire CPU into a low-power idle state whenever all threads in it are idle.
2015-11-27base: Add support for changing output directoriesAndreas Sandberg
This changeset adds support for changing the simulator output directory. This can be useful when the simulation goes through several stages (e.g., a warming phase, a simulation phase, and a verification phase) since it allows the output from each stage to be located in a different directory. Relocation is done by calling core.setOutputDir() from Python or simout.setOutputDirectory() from C++. This change affects several parts of the design of the gem5's output subsystem. First, files returned by an OutputDirectory instance (e.g., simout) are of the type OutputStream instead of a std::ostream. This allows us to do some more book keeping and control re-opening of files when the output directory is changed. Second, new subdirectories are OutputDirectory instances, which should be used to create files in that sub-directory. Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se> [sascha.bischoff@arm.com: Rebased patches onto a newer gem5 version] Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com> Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
2015-07-19cpu: Fix LLSC atomic CPU wakeupKrishnendra Nathella
Writes to locked memory addresses (LLSC) did not wake up the locking CPU. This can lead to deadlocks on multi-core runs. In AtomicSimpleCPU, recvAtomicSnoop was checking if the incoming packet was an invalidation (isInvalidate) and only then handled a locked snoop. But, writes are seen instead of invalidates when running without caches (fast-forward configurations). As as simple fix, now handleLockedSnoop is also called even if the incoming snoop packet are from writes.
2016-02-10mem: Deduce if cache should forward snoopsAndreas Hansson
This patch changes how the cache determines if snoops should be forwarded from the memory side to the CPU side. Instead of having a parameter, the cache now looks at the port connected on the CPU side, and if it is a snooping port, then snoops are forwarded. Less error prone, and less parameters to worry about. The patch also tidies up the CPU classes to ensure that their I-side port is not snooping by removing overrides to the snoop request handler, such that snoop requests will panic via the default MasterPort implement
2016-02-06style: fix missing spaces in control statementsSteve Reinhardt
Result of running 'hg m5style --skip-all --fix-control -a'.
2016-02-06style: remove trailing whitespaceSteve Reinhardt
Result of running 'hg m5style --skip-all --fix-white -a'.
2016-01-17cpu. arch: add initiateMemRead() to ExecContext interfaceSteve Reinhardt
For historical reasons, the ExecContext interface had a single function, readMem(), that did two different things depending on whether the ExecContext supported atomic memory mode (i.e., AtomicSimpleCPU) or timing memory mode (all the other models). In the former case, it actually performed a memory read; in the latter case, it merely initiated a read access, and the read completion did not happen until later when a response packet arrived from the memory system. This led to some confusing things, including timing accesses being required to provide a pointer for the return data even though that pointer was only used in atomic mode. This patch splits this interface, adding a new initiateMemRead() function to the ExecContext interface to replace the timing-mode use of readMem(). For consistency and clarity, the readMemTiming() helper function in the ISA definitions is renamed to initiateMemRead() as well. For x86, where the access size is passed in explicitly, we can also get rid of the data parameter at this level. For other ISAs, where the access size is determined from the type of the data parameter, we have to keep the parameter for that purpose.
2015-10-12misc: Add explicit overrides and fix other clang >= 3.5 issuesAndreas Hansson
This patch adds explicit overrides as this is now required when using "-Wall" with clang >= 3.5, the latter now part of the most recent XCode. The patch consequently removes "virtual" for those methods where "override" is added. The latter should be enough of an indication. As part of this patch, a few minor issues that clang >= 3.5 complains about are also resolved (unused methods and variables).
2015-10-12misc: Remove redundant compiler-specific definesAndreas Hansson
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap (and similar) abstractions, as these are no longer needed with gcc 4.7 and clang 3.1 as minimum compiler versions.
2015-09-30cpu,isa,mem: Add per-thread wakeup logicMitch Hayenga
Changes wakeup functionality so that only specific threads on SMT capable cpus are woken.
2015-09-30isa,cpu: Add support for FS SMT InterruptsMitch Hayenga
Adds per-thread interrupt controllers and thread/context logic so that interrupts properly get routed in SMT systems.
2015-09-30cpu: Add per-thread monitorsMitch Hayenga
Adds per-thread address monitors to support FullSystem SMT.
2015-09-30config,cpu: Add SMT support to Atomic and Timing CPUsMitch Hayenga
Adds SMT support to the "simple" CPU models so that they can be used with other SMT-supported CPUs. Example usage: this enables the TimingSimpleCPU to be used to warmup caches before swapping to detailed mode with the in-order or out-of-order based CPU models.
2015-07-28revert 5af8f40d8f2cNilay Vaish
2015-07-26cpu: implements vector registersNilay Vaish
This adds a vector register type. The type is defined as a std::array of a fixed number of uint64_ts. The isa_parser.py has been modified to parse vector register operands and generate the required code. Different cpus have vector register files now.
2015-07-07sim: Refactor and simplify the drain APIAndreas Sandberg
The drain() call currently passes around a DrainManager pointer, which is now completely pointless since there is only ever one global DrainManager in the system. It also contains vestiges from the time when SimObjects had to keep track of their child objects that needed draining. This changeset moves all of the DrainState handling to the Drainable base class and changes the drain() and drainResume() calls to reflect this. Particularly, the drain() call has been updated to take no parameters (the DrainManager argument isn't needed) and return a DrainState instead of an unsigned integer (there is no point returning anything other than 0 or 1 any more). Drainable objects should return either DrainState::Draining (equivalent to returning 1 in the old system) if they need more time to drain or DrainState::Drained (equivalent to returning 0 in the old system) if they are already in a consistent state. Returning DrainState::Running is considered an error. Drain done signalling is now done through the signalDrainDone() method in the Drainable class instead of using the DrainManager directly. The new call checks if the state of the object is DrainState::Draining before notifying the drain manager. This means that it is safe to call signalDrainDone() without first checking if the simulator has requested draining. The intention here is to reduce the code needed to implement draining in simple objects.
2015-07-07sim: Refactor the serialization base classAndreas Sandberg
Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2015-04-13cpu: re-organizes the branch predictor structure.Dibakar Gope
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2015-04-03cpu: fix system total instructions accountingNikos Nikoleris
The totalInstructions counter is only incremented when the whole instruction is commited and not on every microop. It was incorrectly reset in atomic and timing cpus. Committed by: Nilay Vaish <nilay@cs.wisc.edu>"
2015-03-23mem: rename Locked/LOCKED to LockedRMW/LOCKED_RMWSteve Reinhardt
Makes x86-style locked operations even more distinct from LLSC operations. Using "locked" by itself should be obviously ambiguous now.
2015-02-11mem: restructure Packet cmd initialization a bit moreSteve Reinhardt
Refactor the way that specific MemCmd values are generated for packets. The new approach is a little more elegant in that we assign the right value up front, and it's also more amenable to non-heap-allocated Packet objects. Also replaced the code in the Minor model that was still doing it the ad-hoc way. This is basically a refinement of http://repo.gem5.org/gem5/rev/711eb0e64249.
2015-03-02mem: Split port retry for all different packet classesAndreas Hansson
This patch fixes a long-standing isue with the port flow control. Before this patch the retry mechanism was shared between all different packet classes. As a result, a snoop response could get stuck behind a request waiting for a retry, even if the send/recv functions were split. This caused message-dependent deadlocks in stress-test scenarios. The patch splits the retry into one per packet (message) class. Thus, sendTimingReq has a corresponding recvReqRetry, sendTimingResp has recvRespRetry etc. Most of the changes to the code involve simply clarifying what type of request a specific object was accepting. The biggest change in functionality is in the cache downstream packet queue, facing the memory. This queue was shared by requests and snoop responses, and it is now split into two queues, each with their own flow control, but the same physical MasterPort. These changes fixes the previously seen deadlocks.
2015-02-16arch: Make readMiscRegNoEffect const throughoutAndreas Hansson
Finally took the plunge and made this apply to all ISAs, not just ARM.
2015-02-03cpu: Ensure timing CPU sinks response before sending new requestAndreas Hansson
This patch changes how the timing CPU deals with processing responses, always scheduling an event, even if it is for the current tick. This helps to avoid situations where a new request shows up before a response is finished in the crossbar, and also is more in line with any realistic behaviour.
2015-01-25sim: Clean up InstRecordAli Saidi
Track memory size and flags as well as add some comments and consts.
2015-01-25cpu: Remove all notion that we know when the cpu is misspeculating.Ali Saidi
We have no way of knowing if a CPU model is on the wrong path with our execute-in-execute CPU models. Don't pretend that we do.
2015-01-22mem: Clean up Request initialisationAndreas Hansson
This patch tidies up how we create and set the fields of a Request. In essence it tries to use the constructor where possible (as opposed to setPhys and setVirt), thus avoiding spreading the information across a number of locations. In fact, setPhys is made private as part of this patch, and a number of places where we callede setVirt instead uses the appropriate constructor.
2015-01-20cpu: commit probe notification on every microop or macroopNikos Nikoleris
The ppCommit should notify the attached listener every time the cpu commits a microop or non microcoded insturction. The listener can then decide whether it will process only the last microop (eg. SimPoint probe). Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-12-05cpu: Only check for PC events on instruction boundaries.Gabe Black
Only the instruction address is actually checked, so there's no need to check repeatedly while we're working through the microops of a macroop and that's not changing.
2014-12-02mem: Assume all dynamic packet data is array allocatedAndreas Hansson
This patch simplifies how we deal with dynamically allocated data in the packet, always assuming that it is array allocated, and hence should be array deallocated (delete[] as opposed to delete). The only uses of dataDynamic was in the Ruby testers. The ARRAY_DATA flag in the packet is removed accordingly. No defragmentation of the flags is done at this point, leaving a gap in the bit masks. As the last part the patch, it renames dataDynamicArray to dataDynamic.
2014-12-02mem: Add const getters for write packet dataAndreas Hansson
This patch takes a first step in tightening up how we use the data pointer in write packets. A const getter is added for the pointer itself (getConstPtr), and a number of member functions are also made const accordingly. In a range of places throughout the memory system the new member is used. The patch also removes the unused isReadWrite function.
2014-11-14arm: Fixes based on UBSan and static analysisAndreas Hansson
Another churn to clean up undefined behaviour, mostly ARM, but some parts also touching the generic part of the code base. Most of the fixes are simply ensuring that proper intialisation. One of the more subtle changes is the return type of the sign-extension, which is changed to uint64_t. This is to avoid shifting negative values (undefined behaviour) in the ISA code.
2014-11-12arm: Fix timing wakeup with LLSCAli Saidi
2014-11-06x86 isa: This patch attempts an implementation at mwait.Marc Orr
Mwait works as follows: 1. A cpu monitors an address of interest (monitor instruction) 2. A cpu calls mwait - this loads the cache line into that cpu's cache. 3. The cpu goes to sleep. 4. When another processor requests write permission for the line, it is evicted from the sleeping cpu's cache. This eviction is forwarded to the sleeping cpu, which then wakes up. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2014-10-16cpu: Probe points for basic PMU statsAndreas Sandberg
This changeset adds probe points that can be used to implement PMU counters for CPU stats. The following probes are supported: * BaseCPU::ppCycles / Cycles * BaseCPU::ppRetiredInsts / RetiredInsts * BaseCPU::ppRetiredLoads / RetiredLoads * BaseCPU::ppRetiredStores / RetiredStores * BaseCPU::ppRetiredBranches RetiredBranches
2014-09-27arch: Use const StaticInstPtr references where possibleAndreas Hansson
This patch optimises the passing of StaticInstPtr by avoiding copying the reference-counting pointer. This avoids first incrementing and then decrementing the reference-counting pointer.
2014-09-20cpu: Remove unused deallocateContext callsMitch Hayenga
The call paths for de-scheduling a thread are halt() and suspend(), from the thread context. There is no call to deallocateContext() in general, though some CPUs chose to define it. This patch removes the function from BaseCPU and the cores which do not require it.
2014-09-20alpha,arm,mips,power,x86,cpu,sim: Cleanup activate/deactivateMitch Hayenga
activate(), suspend(), and halt() used on thread contexts had an optional delay parameter. However this parameter was often ignored. Also, when used, the delay was seemily arbitrarily set to 0 or 1 cycle (no other delays were ever specified). This patch removes the delay parameter and 'Events' associated with them across all ISAs and cores. Unused activate logic is also removed.
2014-09-20cpu: use probes infrastructure to do simpoint profilingDam Sunwoo
Instead of having code embedded in cpu model to do simpoint profiling use the probes infrastructure to do it.
2014-09-19arch: Pass faults by const reference where possibleAndreas Hansson
This patch changes how faults are passed between methods in an attempt to copy as few reference-counting pointer instances as possible. This should avoid unecessary copies being created, contributing to the increment/decrement of the reference counters.
2014-05-13mem: Refactor assignment of Packet typesCurtis Dunham
Put the packet type swizzling (that is currently done in a lot of places) into a refineCommand() member function.
2014-09-03arch, cpu: Factor out the ExecContext into a proper base classAndreas Sandberg
We currently generate and compile one version of the ISA code per CPU model. This is obviously wasting a lot of resources at compile time. This changeset factors out the interface into a separate ExecContext class, which also serves as documentation for the interface between CPUs and the ISA code. While doing so, this changeset also fixes up interface inconsistencies between the different CPU models. The main argument for using one set of ISA code per CPU model has always been performance as this avoid indirect branches in the generated code. However, this argument does not hold water. Booting Linux on a simulated ARM system running in atomic mode (opt/10.linux-boot/realview-simple-atomic) is actually 2% faster (compiled using clang 3.4) after applying this patch. Additionally, compilation time is decreased by 35%.
2014-05-09cpu: add more instruction mix statisticsCurtis Dunham
For the o3, add instruction mix (OpClass) histogram at commit (stats also already collected at issue). For the simple CPUs we add a histogram of executed instructions
2014-02-09cpu: simple: Add support for using branch predictorsAndreas Sandberg
This changesets adds branch predictor support to the BaseSimpleCPU. The simple CPUs normally don't need a branch predictor, however, there are at least two cases where it can be desirable: 1) A simple CPU can be used to warm the branch predictor of an O3 CPU before switching to the slower O3 model. 2) The simple CPU can be used as a quick way of evaluating/debugging new branch predictors since it exposes branch predictor statistics. Limitations: * Since the simple CPU doesn't speculate, only one instruction will be active in the branch predictor at a time (i.e., the branch predictor will never see speculative branches). * The outcome of a branch prediction does not affect the performance of the simple CPU.
2014-01-24cpu: Add support for instructions that zero cache lines.Ali Saidi
2014-01-24cpu: Add CPU support for generatig wake up events when LLSC adresses are ↵Ali Saidi
snooped. This patch add support for generating wake-up events in the CPU when an address that is currently in the exclusive state is hit by a snoop. This mechanism is required for ARMv8 multi-processor support.