Age | Commit message (Collapse) | Author |
|
These recordEvent() calls could cause crashes since they
access the req pointer after it's potentially been
deleted during a failed translation call. (Similar
problem to the traceData bug fixed in the previous cset.)
Moving them above the translation call (as was done
recentlyi in cset 8b2b8e5e7d35) avoids the crash
but doesn't work, since at that point we don't know if
the access is uncached or not.
It's not clear why these calls are there, and no one
seems to use them, so we'll just delete them. If they
are needed, they should be moved to somewhere that's
guaranteed to be after the translation completes but
before the request is possibly deleted, e.g., in
finishTranslation().
|
|
Accessing traceData (to call setAddress() and/or setData())
after initiating a timing translation was causing crashes,
since a failed translation could delete the traceData
object before returning.
It turns out that there was never a need to access traceData
after initiating the translation, as the traced data was
always available earlier; this ordering was merely
historical. Furthermore, traceData->setAddress() and
traceData->setData() were being called both from the CPU
model and the ISA definition, often redundantly.
This patch standardizes all setAddress and setData calls
for memory instructions to be in the CPU models and not
in the ISA definition. It also moves those calls above
the translation calls to eliminate the crashes.
|
|
Previously the recording of an uncached read occurred after the request was
possibly deleted within the translateTiming function.
|
|
|
|
This initiates a timing translation and passes the read or write on to the
processor before waiting for it to finish. Once the translation is finished,
the instruction's state is updated via the 'finish' function. A new
DataTranslation class is created to handle this.
The idea is taken from the implementation of timing translations in
TimingSimpleCPU by Gabe Black. This patch also separates out the timing
translations from this CPU and uses the new DataTranslation class.
|
|
|
|
|
|
|
|
Get rid of misc.py and just stick misc things in __init__.py
Move utility functions out of SCons files and into m5.util
Move utility type stuff from m5/__init__.py to m5/util/__init__.py
Remove buildEnv from m5 and allow access only from m5.defines
Rename AddToPath to addToPath while we're moving it to m5.util
Rename read_command to readCommand while we're moving it
Rename compare_versions to compareVersions while we're moving it.
--HG--
rename : src/python/m5/convert.py => src/python/m5/util/convert.py
rename : src/python/m5/smartdict.py => src/python/m5/util/smartdict.py
|
|
|
|
It's still broken in inorder.
Also enhance DPRINTFs in cache and physical memory so we
can see more easily whether it's getting set or not.
|
|
|
|
|
|
|
|
|
|
|
|
--HG--
rename : src/sim/host.hh => src/base/types.hh
|
|
|
|
|
|
|
|
|
|
don't assert.
|
|
Basically merge it in with Halted.
Also had to get rid of a few other functions that
called ThreadContext::deallocate(), including:
- InOrderCPU's setThreadRescheduleCondition.
- ThreadContext::exit(). This function was there to avoid terminating
simulation when one thread out of a multi-thread workload exits, but we
need to find a better (non-cpu-centric) way.
|
|
|
|
|
|
(no functional change)
|
|
|
|
|
|
If the CPL changes mid macroop, the end of the instruction might not be
priveleged enough to execute the beginning.
|
|
the timing simple CPU to use it.
|
|
|
|
|
|
|
|
|
|
Make interrupts use the new wakeup method, and pull all of the interrupt
stuff into the cpu base class so that only the wakeup code needs to be updated.
I tried to make wakeup, wakeCPU, and the various other mechanisms for waking
and sleeping a little more sane, but I couldn't understand why the statistics
were changing the way they were. Maybe we'll try again some day.
|
|
|
|
|
|
|
|
|
|
the primary identifier for a hardware context should be contextId(). The
concept of threads within a CPU remains, in the form of threadId() because
sometimes you need to know which context within a cpu to manipulate.
|
|
across the subclasses. generally make it so that member data is _cpuId and
accessor functions are cpuId(). The ID val comes from the python (default -1 if
none provided), and if it is -1, the index of cpuList will be given. this has
passed util/regress quick and se.py -n4 and fs.py -n4 as well as standard
switch.
|
|
of TimingSimpleCPU.
The constructor no-longer schedules an event at construction and the implict conversion between int and bool was allowing the old code to compile without warning.
Signed-off By: Ali Saidi
|
|
|
|
Removing hwrei causes
the instruction after the hwrei to be fetched before the ITB/DTB_CM register is updated in a call pal
call sys and thus the translation fails because the user is attempting to access a super page address.
Minimally, it seems as though some sort of fetch stall or refetch after a hwrei is required. I think
this works currently because the hwrei uses the exec context interface, and the o3 stalls when that occurs.
Additionally, these changes don't update the LOCK register and probably break ll/sc. Both o3 changes were
removed since a great deal of manual patching would be required to only remove the hwrei change.
|
|
|
|
|
|
combinational or from the ROM.
|
|
x86's Interrupts object.
|
|
|
|
|