summaryrefslogtreecommitdiff
path: root/src/cpu/testers/memtest/memtest.hh
AgeCommit message (Collapse)Author
2015-03-02mem: Split port retry for all different packet classesAndreas Hansson
This patch fixes a long-standing isue with the port flow control. Before this patch the retry mechanism was shared between all different packet classes. As a result, a snoop response could get stuck behind a request waiting for a retry, even if the send/recv functions were split. This caused message-dependent deadlocks in stress-test scenarios. The patch splits the retry into one per packet (message) class. Thus, sendTimingReq has a corresponding recvReqRetry, sendTimingResp has recvRespRetry etc. Most of the changes to the code involve simply clarifying what type of request a specific object was accepting. The biggest change in functionality is in the cache downstream packet queue, facing the memory. This queue was shared by requests and snoop responses, and it is now split into two queues, each with their own flow control, but the same physical MasterPort. These changes fixes the previously seen deadlocks.
2015-02-11cpu: Tidy up the MemTest and make false sharing more obviousAndreas Hansson
The MemTest class really only tests false sharing, and as such there was a lot of old cruft that could be removed. This patch cleans up the tester, and also makes it more clear what the assumptions are. As part of this simplification the reference functional memory is also removed. The regression configs using MemTest are updated to reflect the changes, and the stats will be bumped in a separate patch. The example config will be updated in a separate patch due to more extensive re-work. In a follow-on patch a new tester will be introduced that uses the MemChecker to implement true sharing.
2012-10-15memtest: move check on outstanding requestsNilay Vaish
The Memtest tester allows for only one request to be outstanding for a particular physical address. The check has been written separately for reads and writes. This patch moves the check earlier than its current position so that it need not be written separately for reads and writes.
2012-10-15Port: Add protocol-agnostic ports in the port hierarchyAndreas Hansson
This patch adds an additional level of ports in the inheritance hierarchy, separating out the protocol-specific and protocl-agnostic parts. All the functionality related to the binding of ports is now confined to use BaseMaster/BaseSlavePorts, and all the protocol-specific parts stay in the Master/SlavePort. In the future it will be possible to add other protocol-specific implementations. The functions used in the binding of ports, i.e. getMaster/SlavePort now use the base classes, and the index parameter is updated to use the PortID typedef with the symbolic InvalidPortID as the default.
2012-08-21Clock: Move the clock and related functions to ClockedObjectAndreas Hansson
This patch moves the clock of the CPU, bus, and numerous devices to the new class ClockedObject, that sits in between the SimObject and MemObject in the class hierarchy. Although there are currently a fair amount of MemObjects that do not make use of the clock, they potentially should do so, e.g. the caches should at some point have the same clock as the CPU, potentially with a 1:n ratio. This patch does not introduce any new clock objects or object hierarchies (clusters, clock domains etc), but is still a step in the direction of having a more structured approach clock domains. The most contentious part of this patch is the serialisation of clocks that some of the modules (but not all) did previously. This serialisation should not be needed as the clock is set through the parameters even when restoring from the checkpoint. In other words, the state is "stored" in the Python code that creates the modules. The nextCycle methods are also simplified and the clock phase parameter of the CPU is removed (this could be part of a clock object once they are introduced).
2012-06-05sim: Remove FastAllocAli Saidi
While FastAlloc provides a small performance increase (~1.5%) over regular malloc it isn't thread safe. After removing FastAlloc and using tcmalloc I've seen a performance increase of 12% over libc malloc when running twolf for ARM.
2012-05-01MEM: Separate requests and responses for timing accessesAndreas Hansson
This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-04-14MEM: Separate snoops and normal memory requests/responsesAndreas Hansson
This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-03-30MEM: Introduce the master/slave port sub-classes in C++William Wang
This patch introduces the notion of a master and slave port in the C++ code, thus bringing the previous classification from the Python classes into the corresponding simulation objects and memory objects. The patch enables us to classify behaviours into the two bins and add assumptions and enfore compliance, also simplifying the two interfaces. As a starting point, isSnooping is confined to a master port, and getAddrRanges to slave ports. More of these specilisations are to come in later patches. The getPort function is not getMasterPort and getSlavePort, and returns a port reference rather than a pointer as NULL would never be a valid return value. The default implementation of these two functions is placed in MemObject, and calls fatal. The one drawback with this specific patch is that it requires some code duplication, e.g. QueuedPort becomes QueuedMasterPort and QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort (avoiding multiple inheritance). With the later introduction of the port interfaces, moving the functionality outside the port itself, a lot of the duplicated code will disappear again.
2012-02-24MEM: Move all read/write blob functions from Port to PortProxyAndreas Hansson
This patch moves the readBlob/writeBlob/memsetBlob from the Port class to the PortProxy class, thus making a clear separation of the basic port functionality (recv/send functional/atomic/timing), and the higher-level functional accessors available on the port proxies. There are only a few places in the code base where the blob functions were used on ports, and they are all for peeking into the memory system without making a normal memory access (in the memtest, and the malta and tsunami pchip). The memtest also exemplifies how easy it is to create a non-translating proxy if desired. The malta and tsunami pchip used a slave port to perform a functional read, and this is now changed to rely on the physProxy of the system (to which they already have a pointer).
2012-02-12mem: Add a master ID to each request object.Ali Saidi
This change adds a master id to each request object which can be used identify every device in the system that is capable of issuing a request. This is part of the way to removing the numCpus+1 stats in the cache and replacing them with the master ids. This is one of a series of changes that make way for the stats output to be changed to python.
2012-01-17MEM: Separate queries for snooping and address rangesAndreas Hansson
This patch simplifies the address-range determination mechanism and also unifies the naming across ports and devices. It further splits the queries for determining if a port is snooping and what address ranges it responds to (aiming towards a separation of cache-maintenance ports and pure memory-mapped ports). Default behaviours are such that most ports do not have to define isSnooping, and master ports need not implement getAddrRanges.
2011-06-30Ruby: Add support for functional accessesBrad Beckmann ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E)
This patch rpovides functional access support in Ruby. Currently only the M5Port of RubyPort supports functional accesses. The support for functional through the PioPort will be added as a separate patch.
2011-04-15includes: sort all includesNathan Binkert
2010-08-24testers: move testers to a new directoryBrad Beckmann
This patch moves the testers to a new subdirectory under src/cpu and includes the necessary fixes to work with latest m5 initialization patches. --HG-- rename : configs/example/determ_test.py => configs/example/ruby_direct_test.py rename : src/cpu/directedtest/DirectedGenerator.cc => src/cpu/testers/directedtest/DirectedGenerator.cc rename : src/cpu/directedtest/DirectedGenerator.hh => src/cpu/testers/directedtest/DirectedGenerator.hh rename : src/cpu/directedtest/InvalidateGenerator.cc => src/cpu/testers/directedtest/InvalidateGenerator.cc rename : src/cpu/directedtest/InvalidateGenerator.hh => src/cpu/testers/directedtest/InvalidateGenerator.hh rename : src/cpu/directedtest/RubyDirectedTester.cc => src/cpu/testers/directedtest/RubyDirectedTester.cc rename : src/cpu/directedtest/RubyDirectedTester.hh => src/cpu/testers/directedtest/RubyDirectedTester.hh rename : src/cpu/directedtest/RubyDirectedTester.py => src/cpu/testers/directedtest/RubyDirectedTester.py rename : src/cpu/directedtest/SConscript => src/cpu/testers/directedtest/SConscript rename : src/cpu/directedtest/SeriesRequestGenerator.cc => src/cpu/testers/directedtest/SeriesRequestGenerator.cc rename : src/cpu/directedtest/SeriesRequestGenerator.hh => src/cpu/testers/directedtest/SeriesRequestGenerator.hh rename : src/cpu/memtest/MemTest.py => src/cpu/testers/memtest/MemTest.py rename : src/cpu/memtest/SConscript => src/cpu/testers/memtest/SConscript rename : src/cpu/memtest/memtest.cc => src/cpu/testers/memtest/memtest.cc rename : src/cpu/memtest/memtest.hh => src/cpu/testers/memtest/memtest.hh rename : src/cpu/rubytest/Check.cc => src/cpu/testers/rubytest/Check.cc rename : src/cpu/rubytest/Check.hh => src/cpu/testers/rubytest/Check.hh rename : src/cpu/rubytest/CheckTable.cc => src/cpu/testers/rubytest/CheckTable.cc rename : src/cpu/rubytest/CheckTable.hh => src/cpu/testers/rubytest/CheckTable.hh rename : src/cpu/rubytest/RubyTester.cc => src/cpu/testers/rubytest/RubyTester.cc rename : src/cpu/rubytest/RubyTester.hh => src/cpu/testers/rubytest/RubyTester.hh rename : src/cpu/rubytest/RubyTester.py => src/cpu/testers/rubytest/RubyTester.py rename : src/cpu/rubytest/SConscript => src/cpu/testers/rubytest/SConscript