Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
This patch makes O3 CPU work along with the Ruby memory model. Ruby
overwrites the senderState pointer with another pointer. The pointer
is restored only when Ruby gets done with the packet. LSQ makes use of
senderState just after sendTiming() returns. But the dynamic_cast returns
a NULL pointer since Ruby's senderState pointer is from a different class.
Storing the senderState pointer before calling sendTiming() does away with
the problem.
|
|
Initialize flags via the Event constructor instead of calling
setFlags() in the body of the derived class's constructor. I
forget exactly why, but this made life easier when implementing
multi-queue support.
Also rename Event::getFlags() to isFlagSet() to better match
common usage, and get rid of some unused Event methods.
|
|
In FS mode the syscall function will panic, but the interface will be
consistent and code which calls syscall can be compiled in. This will allow,
for instance, instructions that use syscall to be built unconditionally but
then not returned by the decoder.
|
|
Only create a memory ordering violation when the value could have changed
between two subsequent loads, instead of just when loads go out-of-order
to the same address. While not very common in the case of Alpha, with
an architecture with a hardware table walker this can happen reasonably
frequently beacuse a translation will miss and start a table walk and
before the CPU re-schedules the faulting instruction another one will
pass it to the same address (or cache block depending on the dendency
checking).
This patch has been tested with a couple of self-checking hand crafted
programs to stress ordering between two cores.
The performance improvement on SPEC benchmarks can be substantial (2-10%).
|
|
Having two StaticInst classes, one nominally ISA dependent and the other ISA
dependent, has not been historically useful and makes the StaticInst class
more complicated that it needs to be. This change merges StaticInstBase into
StaticInst.
|
|
This change pulls the instruction decoding machinery (including caches) out of
the StaticInst class and puts it into its own class. This has a few intrinsic
benefits. First, the StaticInst code, which has gotten to be quite large, gets
simpler. Second, the code that handles decode caching is now separated out
into its own component and can be looked at in isolation, making it easier to
understand. I took the opportunity to restructure the code a bit which will
hopefully also help.
Beyond that, this change also lays some ground work for each ISA to have its
own, potentially stateful decode object. We'd be able to include less
contextualizing information in the ExtMachInst objects since that context
would be applied at the decoder. Also, the decoder could "know" ahead of time
that all the instructions it's going to see are going to be, for instance, 64
bit mode, and it will have one less thing to check when it decodes them.
Because the decode caching mechanism has been separated out, it's now possible
to have multiple caches which correspond to different types of decoding
context. Having one cache for each element of the cross product of different
configurations may become prohibitive, so it may be desirable to clear out the
cache when relatively static state changes and not to have one for each
setting.
Because the decode function is no longer universally accessible as a static
member of the StaticInst class, a new function was added to the ThreadContexts
that returns the applicable decode object.
|
|
storesets paper.
This patch improves performance by as much as 10% on some spec benchmarks.
|
|
SEV instructions were originally implemented to cause asynchronous squashes
via the generateTCSquash() function in the O3 pipeline when updating the
SEV_MAILBOX miscReg. This caused race conditions between CPUs in an MP system
that would lead to a pipeline either going inactive indefinitely or not being
able to commit squashed instructions. Fixed SEV instructions to behave like
interrupts and cause synchronous sqaushes inside the pipeline, eliminating
the race conditions. Also fixed up the semantics of the WFE instruction to
behave as documented in the ARMv7 ISA description to not sleep if SEV_MAILBOX=1
or unmasked interrupts are pending.
|
|
|
|
Two issues are fixed in this patch:
1. The load and store pc passed to the predictor are passed in reverse order.
2. The flag indicating that a barrier is inflight was never cleared when
the barrier was squashed instead of committed. This made all load insts
dependent on a non-existent barrier in-flight.
|
|
Change the way instructions are squashed on memory ordering violations
to squash the violator and younger instructions, not all instructions
that are younger than the instruction they violated (no reason to throw
away valid work).
|
|
|
|
|
|
|
|
|
|
It's possible (though until now very unlikely) for fetchAddr to get out of
sync with the actual PC of the current instruction. This change forcefull
resets fetchAddr at the end of every instruction.
|
|
Until now, the only reason a macroop would be left was because it ended at a
microop marked as the last microop. In O3 with branch prediction, it's
possible for the branch predictor to have entries which originally came from
different instructions which happened to have the same RIP. This could
theoretically happen in many ways, but it was encountered specifically when
different programs in different address spaces ran one after the other in
X86_FS.
What would happen in that case was that the macroop would continue to be
looped over and microops fetched from it until it reached the last microop
even though the macropc had moved out from under it. If things lined up
properly, this could mean that the end bytes of an instruction actually fell
into the instruction sized block of memory after the one in the predecoder.
The fetch loop implicitly assumes that the last instruction sized chunk of
memory processed was the last one needed for the instruction it just finished
executing. It would then tell the predecoder to move to an offset within the
bytes it was given that is larger than those bytes, and that would trip an
assert in the x86 predecoder.
This change fixes this problem by making fetch stop processing the current
macroop if the address it should be fetching from changed when the PC is
updated. That happens when the last microop was reached because the instruction
handled it properly, and it also catches the case where the branch predictor
makes fetch do a macro level branch when it shouldn't.
The check of isLastMicroop is retained because otherwise, a macroop that
branches back to itself would act like a single, long macroop instead of
multiple instances of the same microop. There may be situations (which may
turn out to be purely hypothetical) where that matters.
This also fixes a relatively minor issue where the curMacroop variable would
be set to NULL immediately after seeing that a microop was the last one before
curMacroop was used to build the dyninst. The traceData structure would have a
NULL pointer to the macroop for that microop.
|
|
Before this change, the commit stage would wait until the ROB and store queue
were empty before recognizing an interrupt. The fetch stage would stop
generating instructions at an appropriate point, so commit would then wait
until a valid time to interrupt the instruction stream. Instructions might be
in flight after fetch but not the in the ROB or store queue (in rename, for
instance), so this change makes commit wait until all in flight instructions
are finished.
|
|
This patch replaces RUBY with PROTOCOL in all the SConscript files as
the environment variable that decides whether or not certain components
of the simulator are compiled.
|
|
|
|
Let squahsed and deferred instructions issue so they don't accumulate and clog
up the CPU.
|
|
|
|
This allows regular pointers and reference counted pointers without having to
use any shim structures or other tricks.
|
|
This constructor assumes that the ExtMachInst can be decoded directly into a
StaticInst that's useful to execute. With the advent of microcoded
instructions that's no longer true.
|
|
|
|
When fetching from the microcode ROM, if the PC is set so that it isn't in the
cache block that's been fetched the CPU will get stuck. The fetch stage
notices that it's in the ROM so it doesn't try to fetch from the current PC.
It then later notices that it's outside of the current cache block so it skips
generating instructions expecting to continue once the right bytes have been
fetched. This change lets the fetch stage attempt to generate instructions,
and only checks if the bytes it's going to use are valid if it's really going
to use them.
|
|
Implemented a pipeline activity viewer as a python script (util/o3-pipeview.py)
and modified O3 code base to support an extra trace flag (O3PipeView) for
generating traces to be used as inputs by the tool.
|
|
Branch predictor could not predict a branch in a nested loop because:
1. The global history was not updated after a mispredict squash.
2. The global history was updated in the fetch stage. The choice predictors
that were updated used the changed global history. This is incorrect, as
it incorporates the state of global history after the branch in
encountered. Fixed update to choice predictor using the global history
state before the branch happened.
3. The global predictor table was also updated using the global history state
before the branch happened as above.
Additionally, parameters to initialize ctr and history size were reversed.
|
|
Fixed up the patch from Yasuko Watanabe that enabled pipelining of fetch accessess to
icache to work with recent changes to main repository.
Also added in ability for fetch stage to delay issuing the fault carrying
nop when a pipeline fetch causes a fault and no fetch bandwidth is available
until the next cycle.
|
|
|
|
readBytes and writeBytes had the word "bytes" in their names because they
accessed blobs of bytes. This distinguished them from the read and write
functions which handled higher level data types. Because those functions don't
exist any more, this change renames readBytes and writeBytes to more general
names, readMem and writeMem, which reflect the fact that they are how you read
and write memory. This also makes their names more consistent with the
register reading/writing functions, although those are still read and set for
some reason.
|
|
|
|
This patch rpovides functional access support in Ruby. Currently only
the M5Port of RubyPort supports functional accesses. The support for
functional through the PioPort will be added as a separate patch.
|
|
|
|
this will safeguard future code from trying to remove
from the list twice. That code wouldnt break but would
waste time.
|
|
|
|
|
|
handle them like we do in FS mode, by blocking the TLB until the fault
is handled by the fault->invoke()
|
|
|
|
|
|
|
|
implement clearfetchbufferfunction
extend predecoder to use multiple threads and clear those on trap
|
|
this will make sure we get the correct view of a FP register
|
|
|
|
The DTB expects the correct PC in the ThreadContext
but how if the memory accesses are speculative? Shouldn't
we send along the requestor's PC to the translate functions?
|
|
including IPR accesses and store-conditionals. These class of instructions will not
execute correctly in a superscalar machine
|
|
if a faulting instruction reaches an execution unit,
then ignore it and pass it through the pipeline.
Once we recognize the fault in the graduation unit,
dont allow a second fault to creep in on the same cycle.
|