Age | Commit message (Collapse) | Author |
|
This patch adds the notion of source- and derived-clock domains to the
ClockedObjects. As such, all clock information is moved to the clock
domain, and the ClockedObjects are grouped into domains.
The clock domains are either source domains, with a specific clock
period, or derived domains that have a parent domain and a divider
(potentially chained). For piece of logic that runs at a derived clock
(a ratio of the clock its parent is running at) the necessary derived
clock domain is created from its corresponding parent clock
domain. For now, the derived clock domain only supports a divider,
thus ensuring a lower speed compared to its parent. Multiplier
functionality implies a PLL logic that has not been modelled yet
(create a separate clock instead).
The clock domains should be used as a mechanism to provide a
controllable clock source that affects clock for every clocked object
lying beneath it. The clock of the domain can (in a future patch) be
controlled by a handler responsible for dynamic frequency scaling of
the respective clock domains.
All the config scripts have been retro-fitted with clock domains. For
the System a default SrcClockDomain is created. For CPUs that run at a
different speed than the system, there is a seperate clock domain
created. This domain incorporates the CPU and the associated
caches. As before, Ruby runs under its own clock domain.
The clock period of all domains are pre-computed, such that no virtual
functions or multiplications are needed when calling
clockPeriod. Instead, the clock period is pre-computed when any
changes occur. For this to be possible, each clock domain tracks its
children.
|
|
This patch fixes the warnings that clang3.2svn emit due to the "-Wall"
flag. There is one case of an uninitialised value in the ARM neon ISA
description, and then a whole range of unused private fields that are
pruned.
|
|
This patch changes the NS gige controller to have a non-clock, and
sets the default to 500 MHz. The blocks that could prevoiusly be
by-passed with a zero clock are now always present, and the user is
left with the option of setting a very high clock frequency to achieve
a similar performance.
|
|
The Python wrappers and the C++ should have the same object
structure. If this is not the case, bad things will happen when the
SWIG wrappers cast between an object and any of its base classes. This
was not the case for NSGigE and Sinic devices. This patch makes NSGigE
and Sinic inherit from the new EtherDevBase class, which in turn
inherits from EtherDevice. As a bonus, this removes some duplicated
statistics from the Sinic device.
|
|
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
|
|
This patch moves the clock of the CPU, bus, and numerous devices to
the new class ClockedObject, that sits in between the SimObject and
MemObject in the class hierarchy. Although there are currently a fair
amount of MemObjects that do not make use of the clock, they
potentially should do so, e.g. the caches should at some point have
the same clock as the CPU, potentially with a 1:n ratio. This patch
does not introduce any new clock objects or object hierarchies
(clusters, clock domains etc), but is still a step in the direction of
having a more structured approach clock domains.
The most contentious part of this patch is the serialisation of clocks
that some of the modules (but not all) did previously. This
serialisation should not be needed as the clock is set through the
parameters even when restoring from the checkpoint. In other words,
the state is "stored" in the Python code that creates the modules.
The nextCycle methods are also simplified and the clock phase
parameter of the CPU is removed (this could be part of a clock object
once they are introduced).
|
|
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
|
|
|
|
|
|
|
|
Make them easier to express by only having the cxx_type parameter which
has the full namespace name, and drop the cxx_namespace thing.
Add support for multiple levels of namespace.
|
|
NOTE: This code was written by Nathan Binkert in 2006 and is properly copyright
"The Regents of the University of Michigan"
|
|
starts/ends as well as after read/write dmas
|
|
parameters.
--HG--
extra : convert_revision : bd2214b28fb46a9a9e9e204e0539be33acb548ad
|
|
--HG--
extra : convert_revision : 765b096785a77df9adc4791c9101b90696bd7be2
|
|
creation and initialization now happens in python. Parameter objects
are generated and initialized by python. The .ini file is now solely for
debugging purposes and is not used in construction of the objects in any
way.
--HG--
extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
|
|
supposed to and make sure parameters have the right type.
Also make sure that any object that should be an intermediate
type has the right options set.
--HG--
extra : convert_revision : d56910628d9a067699827adbc0a26ab629d11e93
|
|
the SConscript files so that only the objects that are
actually available in a given build are compiled in.
Remove a bunch of files that aren't used anymore.
--HG--
rename : src/python/m5/objects/AlphaTLB.py => src/arch/alpha/AlphaTLB.py
rename : src/python/m5/objects/SparcTLB.py => src/arch/sparc/SparcTLB.py
rename : src/python/m5/objects/BaseCPU.py => src/cpu/BaseCPU.py
rename : src/python/m5/objects/FuncUnit.py => src/cpu/FuncUnit.py
rename : src/python/m5/objects/IntrControl.py => src/cpu/IntrControl.py
rename : src/python/m5/objects/MemTest.py => src/cpu/memtest/MemTest.py
rename : src/python/m5/objects/FUPool.py => src/cpu/o3/FUPool.py
rename : src/python/m5/objects/FuncUnitConfig.py => src/cpu/o3/FuncUnitConfig.py
rename : src/python/m5/objects/O3CPU.py => src/cpu/o3/O3CPU.py
rename : src/python/m5/objects/OzoneCPU.py => src/cpu/ozone/OzoneCPU.py
rename : src/python/m5/objects/SimpleOzoneCPU.py => src/cpu/ozone/SimpleOzoneCPU.py
rename : src/python/m5/objects/BadDevice.py => src/dev/BadDevice.py
rename : src/python/m5/objects/Device.py => src/dev/Device.py
rename : src/python/m5/objects/DiskImage.py => src/dev/DiskImage.py
rename : src/python/m5/objects/Ethernet.py => src/dev/Ethernet.py
rename : src/python/m5/objects/Ide.py => src/dev/Ide.py
rename : src/python/m5/objects/Pci.py => src/dev/Pci.py
rename : src/python/m5/objects/Platform.py => src/dev/Platform.py
rename : src/python/m5/objects/SimConsole.py => src/dev/SimConsole.py
rename : src/python/m5/objects/SimpleDisk.py => src/dev/SimpleDisk.py
rename : src/python/m5/objects/Uart.py => src/dev/Uart.py
rename : src/python/m5/objects/AlphaConsole.py => src/dev/alpha/AlphaConsole.py
rename : src/python/m5/objects/Tsunami.py => src/dev/alpha/Tsunami.py
rename : src/python/m5/objects/T1000.py => src/dev/sparc/T1000.py
rename : src/python/m5/objects/Bridge.py => src/mem/Bridge.py
rename : src/python/m5/objects/Bus.py => src/mem/Bus.py
rename : src/python/m5/objects/MemObject.py => src/mem/MemObject.py
rename : src/python/m5/objects/PhysicalMemory.py => src/mem/PhysicalMemory.py
rename : src/python/m5/objects/BaseCache.py => src/mem/cache/BaseCache.py
rename : src/python/m5/objects/CoherenceProtocol.py => src/mem/cache/coherence/CoherenceProtocol.py
rename : src/python/m5/objects/Repl.py => src/mem/cache/tags/Repl.py
rename : src/python/m5/objects/Process.py => src/sim/Process.py
rename : src/python/m5/objects/Root.py => src/sim/Root.py
rename : src/python/m5/objects/System.py => src/sim/System.py
extra : convert_revision : 173f8764bafa8ef899198438fa5573874e407321
|