summaryrefslogtreecommitdiff
path: root/src/dev/Ethernet.py
AgeCommit message (Collapse)Author
2015-07-15dev: add support for multi gem5 runsGabor Dozsa
Multi gem5 is an extension to gem5 to enable parallel simulation of a distributed system (e.g. simulation of a pool of machines connected by Ethernet links). A multi gem5 run consists of seperate gem5 processes running in parallel (potentially on different hosts/slots on a cluster). Each gem5 process executes the simulation of a component of the simulated distributed system (e.g. a multi-core board with an Ethernet NIC). The patch implements the "distributed" Ethernet link device (dev/src/multi_etherlink.[hh.cc]). This device will send/receive (simulated) Ethernet packets to/from peer gem5 processes. The interface to talk to the peer gem5 processes is defined in dev/src/multi_iface.hh and in tcp_iface.hh. There is also a central message server process (util/multi/tcp_server.[hh,cc]) which acts like an Ethernet switch and transfers messages among the gem5 peers. A multi gem5 simulations can be kicked off by the util/multi/gem5-multi.sh wrapper script. Checkpoints are supported by multi-gem5. The checkpoint must be initiated by a single gem5 process. E.g., the gem5 process with rank 0 can take a checkpoint from the bootscript just before it invokes 'mpirun' to launch an MPI test. The message server process will notify all the other peer gem5 processes and make them take a checkpoint, too (after completing a global synchronisation to ensure that there are no inflight messages among gem5).
2013-06-27sim: Add the notion of clock domains to all ClockedObjectsAkash Bagdia
This patch adds the notion of source- and derived-clock domains to the ClockedObjects. As such, all clock information is moved to the clock domain, and the ClockedObjects are grouped into domains. The clock domains are either source domains, with a specific clock period, or derived domains that have a parent domain and a divider (potentially chained). For piece of logic that runs at a derived clock (a ratio of the clock its parent is running at) the necessary derived clock domain is created from its corresponding parent clock domain. For now, the derived clock domain only supports a divider, thus ensuring a lower speed compared to its parent. Multiplier functionality implies a PLL logic that has not been modelled yet (create a separate clock instead). The clock domains should be used as a mechanism to provide a controllable clock source that affects clock for every clocked object lying beneath it. The clock of the domain can (in a future patch) be controlled by a handler responsible for dynamic frequency scaling of the respective clock domains. All the config scripts have been retro-fitted with clock domains. For the System a default SrcClockDomain is created. For CPUs that run at a different speed than the system, there is a seperate clock domain created. This domain incorporates the CPU and the associated caches. As before, Ruby runs under its own clock domain. The clock period of all domains are pre-computed, such that no virtual functions or multiplications are needed when calling clockPeriod. Instead, the clock period is pre-computed when any changes occur. For this to be possible, each clock domain tracks its children.
2013-02-19scons: Fix warnings issued by clang 3.2svn (XCode 4.6)Andreas Hansson
This patch fixes the warnings that clang3.2svn emit due to the "-Wall" flag. There is one case of an uninitialised value in the ARM neon ISA description, and then a whole range of unused private fields that are pruned.
2013-01-07dev: Make the ethernet devices use a non-zero clockAndreas Hansson
This patch changes the NS gige controller to have a non-clock, and sets the default to 500 MHz. The blocks that could prevoiusly be by-passed with a zero clock are now always present, and the user is left with the option of setting a very high clock frequency to achieve a similar performance.
2012-11-02dev: Fix ethernet device inheritance structureAndreas Sandberg
The Python wrappers and the C++ should have the same object structure. If this is not the case, bad things will happen when the SWIG wrappers cast between an object and any of its base classes. This was not the case for NSGigE and Sinic devices. This patch makes NSGigE and Sinic inherit from the new EtherDevBase class, which in turn inherits from EtherDevice. As a bonus, this removes some duplicated statistics from the Sinic device.
2012-11-02sim: Include object header files in SWIG interfacesAndreas Sandberg
When casting objects in the generated SWIG interfaces, SWIG uses classical C-style casts ( (Foo *)bar; ). In some cases, this can degenerate into the equivalent of a reinterpret_cast (mainly if only a forward declaration of the type is available). This usually works for most compilers, but it is known to break if multiple inheritance is used anywhere in the object hierarchy. This patch introduces the cxx_header attribute to Python SimObject definitions, which should be used to specify a header to include in the SWIG interface. The header should include the declaration of the wrapped object. We currently don't enforce header the use of the header attribute, but a warning will be generated for objects that do not use it.
2012-08-21Clock: Move the clock and related functions to ClockedObjectAndreas Hansson
This patch moves the clock of the CPU, bus, and numerous devices to the new class ClockedObject, that sits in between the SimObject and MemObject in the class hierarchy. Although there are currently a fair amount of MemObjects that do not make use of the clock, they potentially should do so, e.g. the caches should at some point have the same clock as the CPU, potentially with a 1:n ratio. This patch does not introduce any new clock objects or object hierarchies (clusters, clock domains etc), but is still a step in the direction of having a more structured approach clock domains. The most contentious part of this patch is the serialisation of clocks that some of the modules (but not all) did previously. This serialisation should not be needed as the clock is set through the parameters even when restoring from the checkpoint. In other words, the state is "stored" in the Python code that creates the modules. The nextCycle methods are also simplified and the clock phase parameter of the CPU is removed (this could be part of a clock object once they are introduced).
2012-02-13MEM: Introduce the master/slave port roles in the Python classesAndreas Hansson
This patch classifies all ports in Python as either Master or Slave and enforces a binding of master to slave. Conceptually, a master (such as a CPU or DMA port) issues requests, and receives responses, and conversely, a slave (such as a memory or a PIO device) receives requests and sends back responses. Currently there is no differentiation between coherent and non-coherent masters and slaves. The classification as master/slave also involves splitting the dual role port of the bus into a master and slave port and updating all the system assembly scripts to use the appropriate port. Similarly, the interrupt devices have to have their int_port split into a master and slave port. The intdev and its children have minimal changes to facilitate the extra port. Note that this patch does not enforce any port typing in the C++ world, it merely ensures that the Python objects have a notion of the port roles and are connected in an appropriate manner. This check is carried when two ports are connected, e.g. bus.master = memory.port. The following patches will make use of the classifications and specialise the C++ ports into masters and slaves.
2009-07-02typo: correct spellingNathan Binkert
2009-01-06IGbE: Remove is8257 variableAli Saidi
2008-12-05IGbE: Add support for newer 8257x based Intel NICsAli Saidi
2008-10-09SimObjects: Clean up handling of C++ namespaces.Nathan Binkert
Make them easier to express by only having the cxx_type parameter which has the full namespace name, and drop the cxx_namespace thing. Add support for multiple levels of namespace.
2008-10-09SINIC: Commit old code from ASPLOS 2006 studies.Nathan Binkert
NOTE: This code was written by Nathan Binkert in 2006 and is properly copyright "The Regents of the University of Michigan"
2008-08-13Add the ability to specify a think time before descriptor fetch/writeback ↵Ali Saidi
starts/ends as well as after read/write dmas
2007-08-16PCI: Move PCI Configuration data into devices now that we can inherit ↵Ali Saidi
parameters. --HG-- extra : convert_revision : bd2214b28fb46a9a9e9e204e0539be33acb548ad
2007-08-16Devices: Make EtherInts connect in the same way memory ports currently do.Ali Saidi
--HG-- extra : convert_revision : 765b096785a77df9adc4791c9101b90696bd7be2
2007-07-23Major changes to how SimObjects are created and initialized. Almost allNathan Binkert
creation and initialization now happens in python. Parameter objects are generated and initialized by python. The .ini file is now solely for debugging purposes and is not used in construction of the objects in any way. --HG-- extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
2007-06-20Make sure all parameters have default values if they'reNathan Binkert
supposed to and make sure parameters have the right type. Also make sure that any object that should be an intermediate type has the right options set. --HG-- extra : convert_revision : d56910628d9a067699827adbc0a26ab629d11e93
2007-05-27Move SimObject python files alongside the C++ and fixNathan Binkert
the SConscript files so that only the objects that are actually available in a given build are compiled in. Remove a bunch of files that aren't used anymore. --HG-- rename : src/python/m5/objects/AlphaTLB.py => src/arch/alpha/AlphaTLB.py rename : src/python/m5/objects/SparcTLB.py => src/arch/sparc/SparcTLB.py rename : src/python/m5/objects/BaseCPU.py => src/cpu/BaseCPU.py rename : src/python/m5/objects/FuncUnit.py => src/cpu/FuncUnit.py rename : src/python/m5/objects/IntrControl.py => src/cpu/IntrControl.py rename : src/python/m5/objects/MemTest.py => src/cpu/memtest/MemTest.py rename : src/python/m5/objects/FUPool.py => src/cpu/o3/FUPool.py rename : src/python/m5/objects/FuncUnitConfig.py => src/cpu/o3/FuncUnitConfig.py rename : src/python/m5/objects/O3CPU.py => src/cpu/o3/O3CPU.py rename : src/python/m5/objects/OzoneCPU.py => src/cpu/ozone/OzoneCPU.py rename : src/python/m5/objects/SimpleOzoneCPU.py => src/cpu/ozone/SimpleOzoneCPU.py rename : src/python/m5/objects/BadDevice.py => src/dev/BadDevice.py rename : src/python/m5/objects/Device.py => src/dev/Device.py rename : src/python/m5/objects/DiskImage.py => src/dev/DiskImage.py rename : src/python/m5/objects/Ethernet.py => src/dev/Ethernet.py rename : src/python/m5/objects/Ide.py => src/dev/Ide.py rename : src/python/m5/objects/Pci.py => src/dev/Pci.py rename : src/python/m5/objects/Platform.py => src/dev/Platform.py rename : src/python/m5/objects/SimConsole.py => src/dev/SimConsole.py rename : src/python/m5/objects/SimpleDisk.py => src/dev/SimpleDisk.py rename : src/python/m5/objects/Uart.py => src/dev/Uart.py rename : src/python/m5/objects/AlphaConsole.py => src/dev/alpha/AlphaConsole.py rename : src/python/m5/objects/Tsunami.py => src/dev/alpha/Tsunami.py rename : src/python/m5/objects/T1000.py => src/dev/sparc/T1000.py rename : src/python/m5/objects/Bridge.py => src/mem/Bridge.py rename : src/python/m5/objects/Bus.py => src/mem/Bus.py rename : src/python/m5/objects/MemObject.py => src/mem/MemObject.py rename : src/python/m5/objects/PhysicalMemory.py => src/mem/PhysicalMemory.py rename : src/python/m5/objects/BaseCache.py => src/mem/cache/BaseCache.py rename : src/python/m5/objects/CoherenceProtocol.py => src/mem/cache/coherence/CoherenceProtocol.py rename : src/python/m5/objects/Repl.py => src/mem/cache/tags/Repl.py rename : src/python/m5/objects/Process.py => src/sim/Process.py rename : src/python/m5/objects/Root.py => src/sim/Root.py rename : src/python/m5/objects/System.py => src/sim/System.py extra : convert_revision : 173f8764bafa8ef899198438fa5573874e407321