Age | Commit message (Collapse) | Author |
|
The gem5's current PCI host functionality is very ad hoc. The current
implementations require PCI devices to be hooked up to the
configuration space via a separate configuration port. Devices query
the platform to get their config-space address range. Un-mapped parts
of the config space are intercepted using the XBar's default port
mechanism and a magic catch-all device (PciConfigAll).
This changeset redesigns the PCI host functionality to improve code
reuse and make config-space and interrupt mapping more
transparent. Existing platform code has been updated to use the new
PCI host and configured to stay backwards compatible (i.e., no
guest-side visible changes). The current implementation does not
expose any new functionality, but it can easily be extended with
features such as automatic interrupt mapping.
PCI devices now register themselves with a PCI host controller. The
host controller interface is defined in the abstract base class
PciHost. Registration is done by PciHost::registerDevice() which takes
the device, its bus position (bus/dev/func tuple), and its interrupt
pin (INTA-INTC) as a parameter. The registration interface returns a
PciHost::DeviceInterface that the PCI device can use to query memory
mappings and signal interrupts.
The host device manages the entire PCI configuration space. Accesses
to devices decoded into the devices bus position and then forwarded to
the correct device.
Basic PCI host functionality is implemented in the GenericPciHost base
class. Most platforms can use this class as a basic PCI controller. It
provides the following functionality:
* Configurable configuration space decoding. The number of bits
dedicated to a device is a prameter, making it possible to support
both CAM, ECAM, and legacy mappings.
* Basic interrupt mapping using the interruptLine value from a
device's configuration space. This behavior is the same as in the
old implementation. More advanced controllers can override the
interrupt mapping method to dynamically assign host interrupts to
PCI devices.
* Simple (base + addr) remapping from the PCI bus's address space to
physical addresses for PIO, memory, and DMA.
|
|
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
|
|
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
|
|
Clean up some minor things left over from the default responder
change in rev 9af6fb59752f. Mostly renaming the 'responder_set'
param to 'use_default_range' to actually reflect what it does...
old name wasn't that descriptive in the first place, but now
it really doesn't make sense at all.
Also got rid of the bogus obsolete assignment to 'bus.responder'
which used to be a parameter but now is interpreted as an
implicit child assignment, and which was giving me problems in
the config restructuring to come. (A good argument for not
allowing implicit child assignments, IMO, but that's water under
the bridge, I'm afraid.)
Also moved the Bus constructor to the .cc file since that's
where it should have been all along.
|
|
--HG--
rename : src/dev/alpha/AlphaConsole.py => src/dev/alpha/AlphaBackdoor.py
rename : src/dev/alpha/console.cc => src/dev/alpha/backdoor.cc
rename : src/dev/alpha/console.hh => src/dev/alpha/backdoor.hh
|
|
--HG--
rename : src/dev/SimConsole.py => src/dev/Terminal.py
rename : src/dev/simconsole.cc => src/dev/terminal.cc
rename : src/dev/simconsole.hh => src/dev/terminal.hh
|
|
the SConscript files so that only the objects that are
actually available in a given build are compiled in.
Remove a bunch of files that aren't used anymore.
--HG--
rename : src/python/m5/objects/AlphaTLB.py => src/arch/alpha/AlphaTLB.py
rename : src/python/m5/objects/SparcTLB.py => src/arch/sparc/SparcTLB.py
rename : src/python/m5/objects/BaseCPU.py => src/cpu/BaseCPU.py
rename : src/python/m5/objects/FuncUnit.py => src/cpu/FuncUnit.py
rename : src/python/m5/objects/IntrControl.py => src/cpu/IntrControl.py
rename : src/python/m5/objects/MemTest.py => src/cpu/memtest/MemTest.py
rename : src/python/m5/objects/FUPool.py => src/cpu/o3/FUPool.py
rename : src/python/m5/objects/FuncUnitConfig.py => src/cpu/o3/FuncUnitConfig.py
rename : src/python/m5/objects/O3CPU.py => src/cpu/o3/O3CPU.py
rename : src/python/m5/objects/OzoneCPU.py => src/cpu/ozone/OzoneCPU.py
rename : src/python/m5/objects/SimpleOzoneCPU.py => src/cpu/ozone/SimpleOzoneCPU.py
rename : src/python/m5/objects/BadDevice.py => src/dev/BadDevice.py
rename : src/python/m5/objects/Device.py => src/dev/Device.py
rename : src/python/m5/objects/DiskImage.py => src/dev/DiskImage.py
rename : src/python/m5/objects/Ethernet.py => src/dev/Ethernet.py
rename : src/python/m5/objects/Ide.py => src/dev/Ide.py
rename : src/python/m5/objects/Pci.py => src/dev/Pci.py
rename : src/python/m5/objects/Platform.py => src/dev/Platform.py
rename : src/python/m5/objects/SimConsole.py => src/dev/SimConsole.py
rename : src/python/m5/objects/SimpleDisk.py => src/dev/SimpleDisk.py
rename : src/python/m5/objects/Uart.py => src/dev/Uart.py
rename : src/python/m5/objects/AlphaConsole.py => src/dev/alpha/AlphaConsole.py
rename : src/python/m5/objects/Tsunami.py => src/dev/alpha/Tsunami.py
rename : src/python/m5/objects/T1000.py => src/dev/sparc/T1000.py
rename : src/python/m5/objects/Bridge.py => src/mem/Bridge.py
rename : src/python/m5/objects/Bus.py => src/mem/Bus.py
rename : src/python/m5/objects/MemObject.py => src/mem/MemObject.py
rename : src/python/m5/objects/PhysicalMemory.py => src/mem/PhysicalMemory.py
rename : src/python/m5/objects/BaseCache.py => src/mem/cache/BaseCache.py
rename : src/python/m5/objects/CoherenceProtocol.py => src/mem/cache/coherence/CoherenceProtocol.py
rename : src/python/m5/objects/Repl.py => src/mem/cache/tags/Repl.py
rename : src/python/m5/objects/Process.py => src/sim/Process.py
rename : src/python/m5/objects/Root.py => src/sim/Root.py
rename : src/python/m5/objects/System.py => src/sim/System.py
extra : convert_revision : 173f8764bafa8ef899198438fa5573874e407321
|