Age | Commit message (Collapse) | Author |
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
This change includes edits to Intel8254Timer to prevent counter events firing
before startup to comply with SimObject initialization call sequence.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This change includes edits to MC146818 timer to prevent RTC events
firing before startup to comply with SimObject initialization call sequence.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch cleans up the packet memory allocation confusion. The data
is always allocated at the requesting side, when a packet is created
(or copied), and there is never a need for any device to allocate any
space if it is merely responding to a paket. This behaviour is in line
with how SystemC and TLM works as well, thus increasing
interoperability, and matching established conventions.
The redundant calls to Packet::allocate are removed, and the checks in
the function are tightened up to make sure data is only ever allocated
once. There are still some oddities in the packet copy constructor
where we copy the data pointer if it is static (without ownership),
and allocate new space if the data is dynamic (with ownership). The
latter is being worked on further in a follow-on patch.
|
|
Instead of relying on derived classes explicitly assigning
to the BasicPioDevice pioSize field, require them to pass
a size value in to the constructor.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
|
|
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
|
|
|
|
It's not the right fix for the checkpoint deadlock problem
Brad was having, and creates another bug where the system can
deadlock on restore. Brad can't reproduce the original bug
right now, so we'll wait until it arises again and then try
to fix it the right way then.
|
|
Added drain functions to the RTC and 8254 timer so that periodic interrupts
stop when the system is draining. This patch is needed to checkpoint in
timing mode. Otherwise under certain situations, the event queue will never
be completely empty.
|
|
|
|
|
|
|
|
For now, there is still a single global event queue, but this is
necessary for making the steps towards a parallelized m5.
|
|
|
|
|
|
--HG--
extra : convert_revision : 1e7f5185654ed0845678c2169c702d3b977159ed
|
|
--HG--
extra : convert_revision : c7768d54d3f78685e93920069f5485083ca989c0
|
|
--HG--
extra : convert_revision : e06a950964286604274fba81dcca362d75847233
|
|
creation and initialization now happens in python. Parameter objects
are generated and initialized by python. The .ini file is now solely for
debugging purposes and is not used in construction of the objects in any
way.
--HG--
extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
|
|
now encoded in cmd field.
--HG--
extra : convert_revision : d67819b7e3ee4b9a5bf08541104de0a89485e90b
|
|
the other param code so that other functions can use it
as well.
--HG--
extra : convert_revision : a8becdeadc70af0b64bff5b0770788dfba6e1857
|
|
pass the tuple of python's struct_time and interpret that.
Fixes a problem where the local timezone leaked into the time
calculation. Also fix things so that the unix, python, and RTC
data sheets all get the right time. Provide both years since 1900
and BCD two digit year.
Put the date back at 1/1/2006 for now.
--HG--
extra : convert_revision : 473244572f468de2cb579a3dd7ae296a6f81f5d7
|
|
formats for time (strings, datetime objects, etc.)
Advance system time to 1/1/2009
Clean up time management code a little bit
--HG--
extra : convert_revision : 28ebecc7ea6b12f4345c77a9a6b4bdf2e752c4f8
|
|
(but these weren't the cause of the problem).
RangeSize as a function takes a start address, and a SIZE, and will make the range (start, start+size-1) for you.
src/cpu/memtest/memtest.hh:
src/cpu/o3/fetch.hh:
src/cpu/o3/lsq.hh:
src/cpu/ozone/front_end.hh:
src/cpu/ozone/lw_lsq.hh:
src/cpu/simple/atomic.hh:
src/cpu/simple/timing.hh:
Fix RangeSize arguments
src/dev/alpha/tsunami_cchip.cc:
src/dev/alpha/tsunami_io.cc:
src/dev/alpha/tsunami_pchip.cc:
src/dev/baddev.cc:
pioSize indicates SIZE, not a mask
--HG--
extra : convert_revision : d385521fcfe58f8dffc8622260937e668a47a948
|
|
"generic" devices are dependent on some of those files. That will either need to change, or most likely those devices will have to be considered architecture dependent.
--HG--
rename : src/dev/tsunami.cc => src/dev/alpha/tsunami.cc
rename : src/dev/tsunami.hh => src/dev/alpha/tsunami.hh
rename : src/dev/tsunami_cchip.cc => src/dev/alpha/tsunami_cchip.cc
rename : src/dev/tsunami_cchip.hh => src/dev/alpha/tsunami_cchip.hh
rename : src/dev/tsunami_io.cc => src/dev/alpha/tsunami_io.cc
rename : src/dev/tsunami_io.hh => src/dev/alpha/tsunami_io.hh
rename : src/dev/tsunami_pchip.cc => src/dev/alpha/tsunami_pchip.cc
rename : src/dev/tsunami_pchip.hh => src/dev/alpha/tsunami_pchip.hh
rename : src/dev/tsunamireg.h => src/dev/alpha/tsunamireg.h
extra : convert_revision : ffbb6fd93341d2623a6932bf096019b8976da694
|