summaryrefslogtreecommitdiff
path: root/src/dev/arm/flash_device.hh
AgeCommit message (Collapse)Author
2017-06-20arm: Replace EventWrapper use with EventFunctionWrapperSean Wilson
Change-Id: I08de5f72513645d1fe92bde99fa205dde897e951 Signed-off-by: Sean Wilson <spwilson2@wisc.edu> Reviewed-on: https://gem5-review.googlesource.com/3747 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2015-10-23arm: Add missing explicit overrides for ARM devicesAndreas Hansson
Make clang >= 3.5 happy when compiling build/ARM/gem5.opt on OSX.
2015-10-12misc: Remove redundant compiler-specific definesAndreas Hansson
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap (and similar) abstractions, as these are no longer needed with gcc 4.7 and clang 3.1 as minimum compiler versions.
2015-07-07sim: Refactor and simplify the drain APIAndreas Sandberg
The drain() call currently passes around a DrainManager pointer, which is now completely pointless since there is only ever one global DrainManager in the system. It also contains vestiges from the time when SimObjects had to keep track of their child objects that needed draining. This changeset moves all of the DrainState handling to the Drainable base class and changes the drain() and drainResume() calls to reflect this. Particularly, the drain() call has been updated to take no parameters (the DrainManager argument isn't needed) and return a DrainState instead of an unsigned integer (there is no point returning anything other than 0 or 1 any more). Drainable objects should return either DrainState::Draining (equivalent to returning 1 in the old system) if they need more time to drain or DrainState::Drained (equivalent to returning 0 in the old system) if they are already in a consistent state. Returning DrainState::Running is considered an error. Drain done signalling is now done through the signalDrainDone() method in the Drainable class instead of using the DrainManager directly. The new call checks if the state of the object is DrainState::Draining before notifying the drain manager. This means that it is safe to call signalDrainDone() without first checking if the simulator has requested draining. The intention here is to reduce the code needed to implement draining in simple objects.
2015-07-07sim: Refactor the serialization base classAndreas Sandberg
Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2015-04-23arm, dev: Add a NAND flash timing modelRene de Jong
This adds a NAND flash timing model. This model takes the number of planes into account and is ultimately intended to be used as a high-level performance model for any device using flash. To access the memory, use either readMemory or writeMemory. To make use of the model you will need an interface model such as UFSHostDevice, which is part of a separate patch. At the moment the flash device is part of the ARM device tree since the only use if the UFSHostDevice, and that in turn relies on the ARM GIC.