Age | Commit message (Collapse) | Author |
|
|
|
Add 4 power states to the ClockedObject, provides necessary access functions
to check and update the power state. Default power state is UNDEFINED, it is
responsibility of the respective simulation model to provide the startup state
and any other logic for state change.
Add number of transition stat.
Add distribution of time spent in clock gated state.
Add power state residency stat.
Add dump call back function to allow stats update of distribution and residency
stats.
|
|
This changeset adds support for changing the simulator output
directory. This can be useful when the simulation goes through several
stages (e.g., a warming phase, a simulation phase, and a verification
phase) since it allows the output from each stage to be located in a
different directory. Relocation is done by calling core.setOutputDir()
from Python or simout.setOutputDirectory() from C++.
This change affects several parts of the design of the gem5's output
subsystem. First, files returned by an OutputDirectory instance (e.g.,
simout) are of the type OutputStream instead of a std::ostream. This
allows us to do some more book keeping and control re-opening of files
when the output directory is changed. Second, new subdirectories are
OutputDirectory instances, which should be used to create files in
that sub-directory.
Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se>
[sascha.bischoff@arm.com: Rebased patches onto a newer gem5 version]
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Add a stat that counts buffer underruns in the HDLCD controller. The
stat counts at most one underrun per frame since the controller aborts
the current frame if it underruns.
|
|
Rewrite the HDLCD controller to use the new DMA engine and pixel
pump. This fixes several bugs in the current implementation:
* Broken/missing interrupt support (VSync, underrun, DMA end)
* Fragile resolution changes (changing resolutions used
to cause assertion errors).
* Support for resolutions with a width that isn't divisible by 32.
* The pixel clock can now be set dynamically.
This breaks checkpoint compatibility. Checkpoints can be upgraded with
the checkpoint conversion script. However, upgraded checkpoints won't
contain the state of the current frame. That means that HDLCD
controllers restoring from a converted checkpoint immediately start
drawing a new frame (i.e, expect timing differences).
|
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
Some versions of the kernel incorrectly swap the red and blue color
select registers. This changeset adds a workaround for that by
swapping them when instantiating a PixelConverter.
|
|
Currently, frame buffer handling in gem5 is quite ad hoc. In practice,
we pass around naked pointers to raw pixel data and expect consumers
to convert frame buffers using the (broken) VideoConverter.
This changeset completely redesigns the way we handle frame buffers
internally. In summary, it fixes several color conversion bugs, adds
support for more color formats (e.g., big endian), and makes the code
base easier to follow.
In the new world, gem5 always represents pixel data using the Pixel
struct when pixels need to be passed between different classes (e.g.,
a display controller and the VNC server). Producers of entire frames
(e.g., display controllers) should use the FrameBuffer class to
represent a frame.
Frame producers are expected to create one instance of the FrameBuffer
class in their constructors and register it with its consumers
once. Consumers are expected to check the dimensions of the frame
buffer when they consume it.
Conversion between the external representation and the internal
representation is supported for all common "true color" RGB formats of
up to 32-bit color depth. The external pixel representation is
expected to be between 1 and 4 bytes in either big endian or little
endian. Color channels are assumed to be contiguous ranges of bits
within each pixel word. The external pixel value is scaled to an 8-bit
internal representation using a floating multiplication to map it to
the entire 8-bit range.
|
|
This patch cleans up the packet memory allocation confusion. The data
is always allocated at the requesting side, when a packet is created
(or copied), and there is never a need for any device to allocate any
space if it is merely responding to a paket. This behaviour is in line
with how SystemC and TLM works as well, thus increasing
interoperability, and matching established conventions.
The redundant calls to Packet::allocate are removed, and the checks in
the function are tightened up to make sure data is only ever allocated
once. There are still some oddities in the packet copy constructor
where we copy the data pointer if it is static (without ownership),
and allocate new space if the data is dynamic (with ownership). The
latter is being worked on further in a follow-on patch.
|
|
There is an option to enable/disable all framebuffer dumps, but the
last frame always gets dumped in the run folder with no other way to
disable it. These files can add up very quickly running many experiments.
This patch adds an option to disable them. The default behavior
remains unchanged.
|
|
Previously, nextCycle() could return the *current* cycle if the current tick was
already aligned with the clock edge. This behavior is not only confusing (not
quite what the function name implies), but also caused problems in the
drainResume() function. When exiting/re-entering the sim loop (e.g., to take
checkpoints), the CPUs will drain and resume. Due to the previous behavior of
nextCycle(), the CPU tick events were being rescheduled in the same ticks that
were already processed before draining. This caused divergence from runs that
did not exit/re-entered the sim loop. (Initially a cycle difference, but a
significant impact later on.)
This patch separates out the two behaviors (nextCycle() and clockEdge()),
uses nextCycle() in drainResume, and uses clockEdge() everywhere else.
Nothing (other than name) should change except for the drainResume timing.
|
|
Newer core tiles / daughterboards for the Versatile Express platform have an
HDLCD controller that supports HD-quality output. This patch adds an
implementation of the controller.
|