summaryrefslogtreecommitdiff
path: root/src/dev/arm/timer_cpulocal.cc
AgeCommit message (Collapse)Author
2017-06-20arm: Replace EventWrapper use with EventFunctionWrapperSean Wilson
Change-Id: I08de5f72513645d1fe92bde99fa205dde897e951 Signed-off-by: Sean Wilson <spwilson2@wisc.edu> Reviewed-on: https://gem5-review.googlesource.com/3747 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2016-11-09style: [patch 1/22] use /r/3648/ to reorganize includesBrandon Potter
2015-08-07base: Declare a type for context IDsAndreas Sandberg
Context IDs used to be declared as ad hoc (usually as int). This changeset introduces a typedef for ContextIDs and a constant for invalid context IDs.
2015-07-07sim: Refactor the serialization base classAndreas Sandberg
Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2014-12-02mem: Remove redundant Packet::allocate callsAndreas Hansson
This patch cleans up the packet memory allocation confusion. The data is always allocated at the requesting side, when a packet is created (or copied), and there is never a need for any device to allocate any space if it is merely responding to a paket. This behaviour is in line with how SystemC and TLM works as well, thus increasing interoperability, and matching established conventions. The redundant calls to Packet::allocate are removed, and the checks in the function are tightened up to make sure data is only ever allocated once. There are still some oddities in the packet copy constructor where we copy the data pointer if it is static (without ownership), and allocate new space if the data is dynamic (with ownership). The latter is being worked on further in a follow-on patch.
2013-07-11dev: make BasicPioDevice take size in constructorSteve Reinhardt
Instead of relying on derived classes explicitly assigning to the BasicPioDevice pioSize field, require them to pass a size value in to the constructor. Committed by: Nilay Vaish <nilay@cs.wisc.edu>
2013-02-19sim: Make clock private and access using clockPeriod()Andreas Hansson
This patch makes the clock member private to the ClockedObject and forces all children to access it using clockPeriod(). This makes it impossible to inadvertently change the clock, and also makes it easier to transition to a situation where the clock is derived from e.g. a clock domain, or through a multiplier.
2012-10-25arm: Create a GIC base class and make the PL390 derive from itAndreas Sandberg
This patch moves the GIC interface to a separate base class and makes all interrupt devices use that base class instead of a pointer to the PL390 implementation. This allows us to have multiple GIC implementations. Future implementations will allow in-kernel GIC implementations when using hardware virtualization. --HG-- rename : src/dev/arm/gic.cc => src/dev/arm/gic_pl390.cc rename : src/dev/arm/gic.hh => src/dev/arm/gic_pl390.hh
2012-08-21Clock: Move the clock and related functions to ClockedObjectAndreas Hansson
This patch moves the clock of the CPU, bus, and numerous devices to the new class ClockedObject, that sits in between the SimObject and MemObject in the class hierarchy. Although there are currently a fair amount of MemObjects that do not make use of the clock, they potentially should do so, e.g. the caches should at some point have the same clock as the CPU, potentially with a 1:n ratio. This patch does not introduce any new clock objects or object hierarchies (clusters, clock domains etc), but is still a step in the direction of having a more structured approach clock domains. The most contentious part of this patch is the serialisation of clocks that some of the modules (but not all) did previously. This serialisation should not be needed as the clock is set through the parameters even when restoring from the checkpoint. In other words, the state is "stored" in the Python code that creates the modules. The nextCycle methods are also simplified and the clock phase parameter of the CPU is removed (this could be part of a clock object once they are introduced).
2012-05-10ARM: Fix incorrect use of not operators in arm devicesAli Saidi
2011-08-19ARM: Add per-cpu local timers for ARM.Geoffrey Blake
Cortex-A9 processors can have a local timer and watchdog counter. It is enabled by default in Linux and up to this point we've had to disable them since a model wasn't available. This change allows a default MP ARM Linux configuration to boot.