summaryrefslogtreecommitdiff
path: root/src/dev/x86/Pc.py
AgeCommit message (Collapse)Author
2015-12-05dev: Rewrite PCI host functionalityAndreas Sandberg
The gem5's current PCI host functionality is very ad hoc. The current implementations require PCI devices to be hooked up to the configuration space via a separate configuration port. Devices query the platform to get their config-space address range. Un-mapped parts of the config space are intercepted using the XBar's default port mechanism and a magic catch-all device (PciConfigAll). This changeset redesigns the PCI host functionality to improve code reuse and make config-space and interrupt mapping more transparent. Existing platform code has been updated to use the new PCI host and configured to stay backwards compatible (i.e., no guest-side visible changes). The current implementation does not expose any new functionality, but it can easily be extended with features such as automatic interrupt mapping. PCI devices now register themselves with a PCI host controller. The host controller interface is defined in the abstract base class PciHost. Registration is done by PciHost::registerDevice() which takes the device, its bus position (bus/dev/func tuple), and its interrupt pin (INTA-INTC) as a parameter. The registration interface returns a PciHost::DeviceInterface that the PCI device can use to query memory mappings and signal interrupts. The host device manages the entire PCI configuration space. Accesses to devices decoded into the devices bus position and then forwarded to the correct device. Basic PCI host functionality is implemented in the GenericPciHost base class. Most platforms can use this class as a basic PCI controller. It provides the following functionality: * Configurable configuration space decoding. The number of bits dedicated to a device is a prameter, making it possible to support both CAM, ECAM, and legacy mappings. * Basic interrupt mapping using the interruptLine value from a device's configuration space. This behavior is the same as in the old implementation. More advanced controllers can override the interrupt mapping method to dynamically assign host interrupts to PCI devices. * Simple (base + addr) remapping from the PCI bus's address space to physical addresses for PIO, memory, and DMA.
2014-11-21x86: pc: Put a stub IO device at port 0xed which the kernel can use for delays.Gabe Black
There was already a stub device at 0x80, the port traditionally used for an IO delay. 0x80 is also the port used for POST codes sent by firmware, and that may have prompted adding this port as a second option.
2014-07-18x86: make PioBus return BadAddress errorsBinh Pham
Stop setting the use_default_range flag in PioBus in order to have random bad addresses result in a BadAddress response and not a gem5 fatal error. This is necessary in Ruby as Ruby is connected directly to PioBus, so misspeculated addresses will be sent there directly. For the classic memory system, this change has no effect, as bad addresses are caught by the memory bus before being sent to the PioBus. This work was done while Binh was an intern at AMD Research.
2013-11-25sim: simulate with multiple threads and event queuesSteve Reinhardt ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E%2C%20Ali%20Saidi%20%3CAli.Saidi%40ARM.com%3E)
This patch adds support for simulating with multiple threads, each of which operates on an event queue. Each sim object specifies which eventq is would like to be on. A custom barrier implementation is being added using which eventqs synchronize. The patch was tested in two different configurations: 1. ruby_network_test.py: in this simulation L1 cache controllers receive requests from the cpu. The requests are replied to immediately without any communication taking place with any other level. 2. twosys-tsunami-simple-atomic: this configuration simulates a client-server system which are connected by an ethernet link. We still lack the ability to communicate using message buffers or ports. But other things like simulation start and end, synchronizing after every quantum are working. Committed by: Nilay Vaish
2012-11-02sim: Include object header files in SWIG interfacesAndreas Sandberg
When casting objects in the generated SWIG interfaces, SWIG uses classical C-style casts ( (Foo *)bar; ). In some cases, this can degenerate into the equivalent of a reinterpret_cast (mainly if only a forward declaration of the type is available). This usually works for most compilers, but it is known to break if multiple inheritance is used anywhere in the object hierarchy. This patch introduces the cxx_header attribute to Python SimObject definitions, which should be used to specify a header to include in the SWIG interface. The header should include the declaration of the wrapped object. We currently don't enforce header the use of the header attribute, but a warning will be generated for objects that do not use it.
2012-04-05Config: corrects the way Ruby attaches to the DMA portsNilay Vaish
With recent changes to the memory system, a port cannot be assigned a peer port twice. While making use of the Ruby memory system in FS mode, DMA ports were assigned peer twice, once for the classic memory system and once for the Ruby memory system. This patch removes this double assignment of peer ports.
2012-02-13MEM: Introduce the master/slave port roles in the Python classesAndreas Hansson
This patch classifies all ports in Python as either Master or Slave and enforces a binding of master to slave. Conceptually, a master (such as a CPU or DMA port) issues requests, and receives responses, and conversely, a slave (such as a memory or a PIO device) receives requests and sends back responses. Currently there is no differentiation between coherent and non-coherent masters and slaves. The classification as master/slave also involves splitting the dual role port of the bus into a master and slave port and updating all the system assembly scripts to use the appropriate port. Similarly, the interrupt devices have to have their int_port split into a master and slave port. The intdev and its children have minimal changes to facilitate the extra port. Note that this patch does not enforce any port typing in the C++ world, it merely ensures that the Python objects have a notion of the port roles and are connected in an appropriate manner. This check is carried when two ports are connected, e.g. bus.master = memory.port. The following patches will make use of the classifications and specialise the C++ ports into masters and slaves.
2010-08-17bus: clean up default responder code.Steve Reinhardt
Clean up some minor things left over from the default responder change in rev 9af6fb59752f. Mostly renaming the 'responder_set' param to 'use_default_range' to actually reflect what it does... old name wasn't that descriptive in the first place, but now it really doesn't make sense at all. Also got rid of the bogus obsolete assignment to 'bus.responder' which used to be a parameter but now is interpreted as an implicit child assignment, and which was giving me problems in the config restructuring to come. (A good argument for not allowing implicit child assignments, IMO, but that's water under the bridge, I'm afraid.) Also moved the Bus constructor to the .cc file since that's where it should have been all along.
2009-02-01X86: Plug in an IDE controller.Gabe Black
2009-01-25X86: Add a device to back the non-existant floppy drive controller.Gabe Black
2009-01-25X86: Add fake devices for non-existant serial ports.Gabe Black
2008-10-11X86: Rename the PC device to Pc.Gabe Black
--HG-- rename : src/dev/x86/PC.py => src/dev/x86/Pc.py