Age | Commit message (Collapse) | Author |
|
Most of its functionality has been exported already. This change makes
the two classes which were inheriting IntDevice create an IntMasterPort
themselves.
Change-Id: I73d17cd79cf8252b0e26dd2576f552bf9054adf4
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20825
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
This makes the IntMasterPort usable with any class, making it possible
to avoid inheriting from IntDevice.
It also makes IntMasterPort inherit directly from QueuedMasterPort,
skipping over MessageMasterPort.
Change-Id: I9d218556c838ea567ced5f6fa4d57a3ec9d28d31
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20821
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
This makes the device IntSlavePort calls back into based on a template
parameter so that IntDevice doesn't have to be in the inheritance
hierarchy to use it.
It also makes IntSlavePort inherit from SimpleTimingPort directly,
skipping over MessageSlavePort.
Change-Id: Ic3213edc9c3ed5e506ee1e9f5e082cd47d7c7998
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20820
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Change-Id: I3915f0ad673119b551dcc4c5cedec180a9b88735
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20702
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
Change-Id: I4551ad00cf205c31555c90b53e87bc206a8d8729
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/20701
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>
|
|
Replace the getMasterPort, getSlavePort, and getEthPort functions
with getPort, and remove extraneous mechanisms that are no longer
necessary.
Change-Id: Iab7e3c02d2f3a0cf33e7e824e18c28646b5bc318
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/17040
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
Make clang >= 3.5 happy when compiling build/X86/gem5.opt on OSX.
|
|
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
|
|
IntDevice::recvResponse is called from two places in current mainline: (1) the
short circuit path of X86ISA::IntDevice::IntMasterPort::sendMessage for atomic
mode, and (2) the full request->response path to and from the x86 interrupts
device (finally called from MessageMasterPort::recvTimingResp). In the former
case, the packet was deleted correctly, but in the latter case, the packet and
request leak. To fix the leak, move request and packet deletion into IntDevice
inherited class implementations of recvResponse.
|
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
PciDev and IntDev stuck out as the only device classes that
ended in 'Dev' rather than 'Device'. This patch takes care
of that inconsistency.
Note that you may need to delete pre-existing files matching
build/*/python/m5/internal/param_* as scons does not pick up
indirect dependencies on imported python modules when generating
params, and the PciDev -> PciDevice rename takes place in a
file (dev/Device.py) that gets imported quite a bit.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
A couple of devices that have single fixed memory mapped regions
were not derived from BasicPioDevice, when that's exactly
the functionality that BasicPioDevice provides. This patch
gets rid of a little bit of redundant code by making those
devices actually do so.
Also fixed the weird case of X86ISA::Interrupts, where
the class already did derive from BasicPioDevice but
didn't actually use all the features it could have.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.
The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
|
|
This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.
In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.
--HG--
rename : src/base/range.hh => src/base/addr_range.hh
rename : src/base/range_map.hh => src/base/addr_range_map.hh
|
|
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
|
|
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
|
|
This patch moves all port creation from the getPort method to be
consistently done in the MemObject's constructor. This is possible
thanks to the Swig interface passing the length of the vector ports.
Previously there was a mix of: 1) creating the ports as members (at
object construction time) and using getPort for the name resolution,
or 2) dynamically creating the ports in the getPort call. This is now
uniform. Furthermore, objects that would not be complete without a
port have these ports as members rather than having pointers to
dynamically allocated ports.
This patch also enables an elaboration-time enumeration of all the
ports in the system which can be used to determine the masterId.
|
|
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
|
|
--HG--
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
|
|
This is so they don't have to declare themselves to the IO APIC and don't have
to have a pointer to the platform object.
|
|
|
|
|
|
Add checkpointing capability to the Intel 8254 timer, CMOS, I8042,
PS2 Keyboard and Mouse, I82094AA, I8237, I8254, I8259, and speaker
devices
|
|
Ran all the source files through 'perl -pi' with this script:
s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;
Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.
|
|
Lowest priority interrupts are now delivered based on a rotating offset into
the list of potential recipients. There could be parasitic cases were a
processor gets picked on and ends up at that rotating offset all the time, but
it's much more likely that the group will stay consistent and the pain will be
distributed evenly.
|
|
This is a hack so that the IO APIC can figure out information about the local
APICs. The local APICs still have no way to find out about each other.
Ideally, when the local APICs update state that's relevant to somebody else,
they'd send an update to everyone. Without being able to do a broadcast, that
would still require knowing who else there is to notify. Other broadcasts are
implemented using assumptions that may not always be true.
|
|
The ID as exposed to software can be changed. Tracking those changes in M5
would be cumbersome, especially since there's no guarantee the IDs will remain
unique.
|
|
interrupt assignment.
|
|
|
|
|
|
|
|
|