Age | Commit message (Collapse) | Author |
|
This patch does a bit of tidying up in the bridge code, adding const
where appropriate and also removing redundant checks and adding a few
new ones.
There are no changes to the behaviour of any regressions.
|
|
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
|
|
This patch removes the NACKing in the bridge, as the split
request/response busses now ensure that protocol deadlocks do not
occur, i.e. the message-dependency chain is broken by always allowing
responses to make progress without being stalled by requests. The
NACKs had limited support in the system with most components ignoring
their use (with a suitable call to panic), and as the NACKs are no
longer needed to avoid protocol deadlocks, the cleanest way is to
simply remove them.
The bridge is the starting point as this is the only place where the
NACKs are created. A follow-up patch will remove the code that deals
with NACKs in the endpoints, e.g. the X86 table walker and DMA
port. Ultimately the type of packet can be complete removed (until
someone sees a need for modelling more complex protocols, which can
now be done in parts of the system since the port and interface is
split).
As a consequence of the NACK removal, the bridge now has to send a
retry to a master if the request or response queue was full on the
first attempt. This change also makes the bridge ports very similar to
QueuedPorts, and a later patch will change the bridge to use these. A
first step in this direction is taken by aligning the name of the
member functions, as done by this patch.
A bit of tidying up has also been done as part of the simplifications.
Surprisingly, this patch has no impact on any of the
regressions. Hence, there was never any NACKs issued. In a follow-up
patch I would suggest changing the size of the bridge buffers set in
FSConfig.py to also test the situation where the bridge fills up.
|
|
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
|
|
This patch makes the bus bridge uni-directional and specialises the
bus ports to be a master port and a slave port. This greatly
simplifies the assumptions on both sides as either port only has to
deal with requests or responses. The following patches introduce the
notion of master and slave ports, and would not be possible without
this split of responsibilities.
In making the bridge unidirectional, the address range mechanism of
the bridge is also changed. For the cases where communication is
taking place both ways, an additional bridge is needed. This causes
issues with the existing mechanism, as the busses cannot determine
when to stop iterating the address updates from the two bridges. To
avoid this issue, and also greatly simplify the specification, the
bridge now has a fixed set of address ranges, specified at creation
time.
|
|
way so a cache can handle partial block requests for i/o devices.
--HG--
extra : convert_revision : a68b5ae826731bc87ed93eb7ef326a2393053964
|
|
the SConscript files so that only the objects that are
actually available in a given build are compiled in.
Remove a bunch of files that aren't used anymore.
--HG--
rename : src/python/m5/objects/AlphaTLB.py => src/arch/alpha/AlphaTLB.py
rename : src/python/m5/objects/SparcTLB.py => src/arch/sparc/SparcTLB.py
rename : src/python/m5/objects/BaseCPU.py => src/cpu/BaseCPU.py
rename : src/python/m5/objects/FuncUnit.py => src/cpu/FuncUnit.py
rename : src/python/m5/objects/IntrControl.py => src/cpu/IntrControl.py
rename : src/python/m5/objects/MemTest.py => src/cpu/memtest/MemTest.py
rename : src/python/m5/objects/FUPool.py => src/cpu/o3/FUPool.py
rename : src/python/m5/objects/FuncUnitConfig.py => src/cpu/o3/FuncUnitConfig.py
rename : src/python/m5/objects/O3CPU.py => src/cpu/o3/O3CPU.py
rename : src/python/m5/objects/OzoneCPU.py => src/cpu/ozone/OzoneCPU.py
rename : src/python/m5/objects/SimpleOzoneCPU.py => src/cpu/ozone/SimpleOzoneCPU.py
rename : src/python/m5/objects/BadDevice.py => src/dev/BadDevice.py
rename : src/python/m5/objects/Device.py => src/dev/Device.py
rename : src/python/m5/objects/DiskImage.py => src/dev/DiskImage.py
rename : src/python/m5/objects/Ethernet.py => src/dev/Ethernet.py
rename : src/python/m5/objects/Ide.py => src/dev/Ide.py
rename : src/python/m5/objects/Pci.py => src/dev/Pci.py
rename : src/python/m5/objects/Platform.py => src/dev/Platform.py
rename : src/python/m5/objects/SimConsole.py => src/dev/SimConsole.py
rename : src/python/m5/objects/SimpleDisk.py => src/dev/SimpleDisk.py
rename : src/python/m5/objects/Uart.py => src/dev/Uart.py
rename : src/python/m5/objects/AlphaConsole.py => src/dev/alpha/AlphaConsole.py
rename : src/python/m5/objects/Tsunami.py => src/dev/alpha/Tsunami.py
rename : src/python/m5/objects/T1000.py => src/dev/sparc/T1000.py
rename : src/python/m5/objects/Bridge.py => src/mem/Bridge.py
rename : src/python/m5/objects/Bus.py => src/mem/Bus.py
rename : src/python/m5/objects/MemObject.py => src/mem/MemObject.py
rename : src/python/m5/objects/PhysicalMemory.py => src/mem/PhysicalMemory.py
rename : src/python/m5/objects/BaseCache.py => src/mem/cache/BaseCache.py
rename : src/python/m5/objects/CoherenceProtocol.py => src/mem/cache/coherence/CoherenceProtocol.py
rename : src/python/m5/objects/Repl.py => src/mem/cache/tags/Repl.py
rename : src/python/m5/objects/Process.py => src/sim/Process.py
rename : src/python/m5/objects/Root.py => src/sim/Root.py
rename : src/python/m5/objects/System.py => src/sim/System.py
extra : convert_revision : 173f8764bafa8ef899198438fa5573874e407321
|