Age | Commit message (Collapse) | Author |
|
This patch adds packet tracing to the communication monitor using a
protobuf as the mechanism for creating the trace.
If no file is specified, then the tracing is disabled. If a file is
specified, then for every packet that is successfully sent, a protobuf
message is serialized to the file.
|
|
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
|
|
This patch adds a communication monitor MemObject that can be inserted
between a master and slave port to provide a range of statistics about
the communication passing through it. The communication monitor is
non-invasive and does not change any properties or timing of the
packets, with the exception of adding a sender state to be able to
track latency. The statistics are only collected in timing mode (not
atomic) to avoid slowing down any fast forwarding.
An example of the statistics captured by the monitor are: read/write
burst lengths, bandwidth, request-response latency, outstanding
transactions, inter transaction time, transaction count, and address
distribution. The monitor can be used in combination with periodic
resetting and dumping of stats (through schedStatEvent) to study the
behaviour over time.
In future patches, a selection of convenience scripts will be added to
aid in visualising the statistics collected by the monitor.
|