Age | Commit message (Collapse) | Author |
|
Static analysis unearther a bunch of uninitialised variables and
members, and this patch addresses the problem. In all cases these
omissions seem benign in the end, but at least fixing them means less
false positives next time round.
|
|
Support full-block writes directly rather than requiring RMW:
* a cache line is allocated in the cache upon receipt of a
WriteInvalidateReq, not the WriteInvalidateResp.
* only top-level caches allocate the line; the others just pass
the request along and invalidate as necessary.
* to close a timing window between the *Req and the *Resp, a new
metadata bit tracks whether another cache has read a copy of
the new line before the writeback to memory.
|
|
This patch fixes a bug in the cache port where the retry flag was
reset too early, allowing new requests to arrive before the retry was
actually sent, but with the event already scheduled. This caused a
deadlock in the interactions with the O3 LSQ.
The patche fixes the underlying issue by shifting the resetting of the
flag to be done by the event that also calls sendRetry(). The patch
also tidies up the flow control in recvTimingReq and ensures that we
also check if we already have a retry outstanding.
|
|
this patch implements a new tags class that uses a random replacement policy.
these tags prefer to evict invalid blocks first, if none are available a
replacement candidate is chosen at random.
this patch factors out the common code in the LRU class and creates a new
abstract class: the BaseSetAssoc class. any set associative tag class must
implement the functionality related to the actual replacement policy in the
following methods:
accessBlock()
findVictim()
insertBlock()
invalidate()
|
|
This patch makes it possible to once again build gem5 without any
ISA. The main purpose is to enable work around the interconnect and
memory system without having to build any CPU models or device models.
The regress script is updated to include the NULL ISA target. Currently
no regressions make use of it, but all the testers could (and perhaps
should) transition to it.
--HG--
rename : build_opts/NOISA => build_opts/NULL
rename : src/arch/noisa/SConsopts => src/arch/null/SConsopts
rename : src/arch/noisa/cpu_dummy.hh => src/arch/null/cpu_dummy.hh
rename : src/cpu/intr_control.cc => src/cpu/intr_control_noisa.cc
|
|
This patch removes the notion of a peer block size and instead sets
the cache line size on the system level.
Previously the size was set per cache, and communicated through the
interconnect. There were plenty checks to ensure that everyone had the
same size specified, and these checks are now removed. Another benefit
that is not yet harnessed is that the cache line size is now known at
construction time, rather than after the port binding. Hence, the
block size can be locally stored and does not have to be queried every
time it is used.
A follow-on patch updates the configuration scripts accordingly.
|
|
This patch reorganizes the cache tags to allow more flexibility to
implement new replacement policies. The base tags class is now a
clocked object so that derived classes can use a clock if they need
one. Also having deriving from SimObject allows specialized Tag
classes to be swapped in/out in .py files.
The cache set is now templatized to allow it to contain customized
cache blocks with additional informaiton. This involved moving code to
the .hh file and removing cacheset.cc.
The statistics belonging to the cache tags are now including ".tags"
in their name. Hence, the stats need an update to reflect the change
in naming.
|
|
This patch removes the redundant cache builder class.
|
|
This patch solves the corner case scenario where the sendRetryEvent could be
scheduled twice, when an io device stresses the IOcache in the system. This
should not be possible in the cache system.
|
|
the cache drainManager is set but never cleared, this is because
the cache itself does not need to be drained and thus never
triggers a signalDrainDone(). because the drainManager variable
is not used properly and does not appear to be necessary it has
been removed with this patch.
|
|
This patch adds a check to the clocked object constructor to ensure it
is not configured to have a clock period of 0.
|
|
This patch adds support for the following optional drain methods in
the classical memory system's cache model:
memWriteback() - Write back all dirty cache lines to memory using
functional accesses.
memInvalidate() - Invalidate all cache lines. Dirty cache lines
are lost unless a writeback is requested.
Since memWriteback() is called when checkpointing systems, this patch
adds support for checkpointing systems with caches. The serialization
code now checks whether there are any dirty lines in the cache. If
there are dirty lines in the cache, the checkpoint is flagged as bad
and a warning is printed.
|
|
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
|
|
This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.
The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
|
|
This patch changes the cache-related latencies from an absolute time
expressed in Ticks, to a number of cycles that can be scaled with the
clock period of the caches. Ultimately this patch serves to enable
future work that involves dynamic frequency scaling. As an immediate
benefit it also makes it more convenient to specify cache performance
without implicitly assuming a specific CPU core operating frequency.
The stat blocked_cycles that actually counter in ticks is now updated
to count in cycles.
As the timing is now rounded to the clock edges of the cache, there
are some regressions that change. Plenty of them have very minor
changes, whereas some regressions with a short run-time are perturbed
quite significantly. A follow-on patch updates all the statistics for
the regressions.
|
|
In the current caches the hit latency is paid twice on a miss. This patch lets
a configurable response latency be set of the cache for the backward path.
|
|
DPRINTFs
This patch fixes some problems with the drain/switchout functionality
for the O3 cpu and for the ARM ISA and adds some useful debug print
statements.
This is an incremental fix as there are still a few bugs/mem leaks with the
switchout code. Particularly when switching from an O3CPU to a
TimingSimpleCPU. However, when switching from O3 to O3 cores with the ARM ISA
I haven't encountered any more assertion failures; now the kernel will
typically panic inside of simulation.
|
|
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
|
|
This patch decouples the queueing and the port interactions to
simplify the introduction of the master and slave ports. By separating
the queueing functionality from the port itself, it becomes much
easier to distinguish between master and slave ports, and still retain
the queueing ability for both (without code duplication).
As part of the split into a PacketQueue and a port, there is now also
a hierarchy of two port classes, QueuedPort and SimpleTimingPort. The
QueuedPort is useful for ports that want to leave the packet
transmission of outgoing packets to the queue and is used by both
master and slave ports. The SimpleTimingPort inherits from the
QueuedPort and adds the implemention of recvTiming and recvFunctional
through recvAtomic.
The PioPort and MessagePort are cleaned up as part of the changes.
--HG--
rename : src/mem/tport.cc => src/mem/packet_queue.cc
rename : src/mem/tport.hh => src/mem/packet_queue.hh
|
|
|
|
This patch splits the two cache ports into a master (memory-side) and
slave (cpu-side) subclass of port with slightly different
functionality. For example, it is only the CPU-side port that blocks
incoming requests, and only the memory-side port that schedules send
events outside of what the transmit list dictates.
This patch simplifies the two classes by relying further on
SimpleTimingPort and also generalises the latter to better accommodate
the changes (introducing trySendTiming and scheduleSend). The
memory-side cache port overrides sendDeferredPacket to be able to not
only send responses from the transmit list, but also send requests
based on the MSHRs.
A follow on patch further simplifies the SimpleTimingPort and the
cache ports.
|
|
This patch fixes the cache stats to use the new request ids.
Cache stats also display the requestor names in the vector subnames.
Most cache stats now include "nozero" and "nonan" flags to reduce the
amount of excessive cache stat dump. Also, simplified
incMissCount()/incHitCount() functions.
|
|
|
|
This patch is a very straight-forward simplification, removing the
unecessary otherPort pointer from the cache port. The pointer was only
used to forward range changes, and the address range is fixed for the
cache. Removing the pointer simplifies the transition to master/slave
ports.
|
|
--HG--
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|
|
This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
|
|
This patch removes the inheritance of EventManager from the ports and
moves all responsibility for event queues to the owner. Eventually the
event manager should be the interface block, which could either be the
structural owner or a subblock like a LSQ in the O3 CPU for example.
|
|
|
|
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
|
|
non-cache.
This change fixes the problem for all the cases we actively use. If you want to try
more creative I/O device attachments (E.g. sharing an L2), this won't work. You
would need another level of caching between the I/O device and the cache
(which you actually need anyway with our current code to make sure writes
propagate). This is required so that you can mark the cache in between as
top level and it won't try to send ownership of a block to the I/O device.
Asserts have been added that should catch any issues.
|
|
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
|
|
On the config end, if a shared L2 is created for the system, it is
parameterized to have n sharers as defined by option.num_cpus. In addition to
making the cache sharing aware so that discriminating tag policies can make use
of context_ids to make decisions, I added an occupancy AverageStat and an occ %
stat to each cache so that you could know which contexts are occupying how much
cache on average, both in terms of blocks and percentage. Note that since
devices have context_id -1, having an array of occ stats that correspond to
each context_id will break here, so in FS mode I add an extra bucket for device
blocks. This bucket is explicitly not added in SE mode in order to not only
avoid ugliness in the stats.txt file, but to avoid broken stats (some formulas
break when a bucket is 0).
|
|
|
|
Previously there was one per bus, which caused some coherence problems
when more than one decided to respond. Now there is just one on
the main memory bus. The default bus responder on all other buses
is now the downstream cache's cpu_side port. Caches no longer need
to do address range filtering; instead, we just have a simple flag
to prevent snoops from propagating to the I/O bus.
|
|
For now, there is still a single global event queue, but this is
necessary for making the steps towards a parallelized m5.
|
|
--HG--
extra : convert_revision : b5008115dc5b34958246608757e69a3fa43b85c5
|
|
--HG--
rename : src/mem/cache/base_cache.cc => src/mem/cache/base.cc
rename : src/mem/cache/base_cache.hh => src/mem/cache/base.hh
rename : src/mem/cache/cache_blk.cc => src/mem/cache/blk.cc
rename : src/mem/cache/cache_blk.hh => src/mem/cache/blk.hh
rename : src/mem/cache/cache_builder.cc => src/mem/cache/builder.cc
rename : src/mem/cache/miss/mshr.cc => src/mem/cache/mshr.cc
rename : src/mem/cache/miss/mshr.hh => src/mem/cache/mshr.hh
rename : src/mem/cache/miss/mshr_queue.cc => src/mem/cache/mshr_queue.cc
rename : src/mem/cache/miss/mshr_queue.hh => src/mem/cache/mshr_queue.hh
rename : src/mem/cache/prefetch/base_prefetcher.cc => src/mem/cache/prefetch/base.cc
rename : src/mem/cache/prefetch/base_prefetcher.hh => src/mem/cache/prefetch/base.hh
rename : src/mem/cache/prefetch/ghb_prefetcher.cc => src/mem/cache/prefetch/ghb.cc
rename : src/mem/cache/prefetch/ghb_prefetcher.hh => src/mem/cache/prefetch/ghb.hh
rename : src/mem/cache/prefetch/stride_prefetcher.cc => src/mem/cache/prefetch/stride.cc
rename : src/mem/cache/prefetch/stride_prefetcher.hh => src/mem/cache/prefetch/stride.hh
rename : src/mem/cache/prefetch/tagged_prefetcher.cc => src/mem/cache/prefetch/tagged.cc
rename : src/mem/cache/prefetch/tagged_prefetcher.hh => src/mem/cache/prefetch/tagged.hh
rename : src/mem/cache/tags/base_tags.cc => src/mem/cache/tags/base.cc
rename : src/mem/cache/tags/base_tags.hh => src/mem/cache/tags/base.hh
rename : src/mem/cache/tags/Repl.py => src/mem/cache/tags/iic_repl/Repl.py
rename : src/mem/cache/tags/repl/gen.cc => src/mem/cache/tags/iic_repl/gen.cc
rename : src/mem/cache/tags/repl/gen.hh => src/mem/cache/tags/iic_repl/gen.hh
rename : src/mem/cache/tags/repl/repl.hh => src/mem/cache/tags/iic_repl/repl.hh
extra : convert_revision : ff7a35cc155a8d80317563c45cebe405984eac62
|