Age | Commit message (Collapse) | Author |
|
Context IDs used to be declared as ad hoc (usually as int). This
changeset introduces a typedef for ContextIDs and a constant for
invalid context IDs.
|
|
This patch makes cache sets aware of the way number. This enables
some nice features such as the ablity to restrict way allocation. The
implemented mechanism allows to set a maximum way number to be
allocated 'k' which must fulfill 0 < k <= N (where N is the number of
ways). In the future more sophisticated mechasims can be implemented.
|
|
This patch modernises and tidies up the CacheBlk, removing dead code.
|
|
This patch changes the cache implementation to rely on virtual methods
rather than using the replacement policy as a template argument.
There is no impact on the simulation performance, and overall the
changes make it easier to modify (and subclass) the cache and/or
replacement policy.
|
|
Prepare for a different implementation following in the next patch
|
|
Support full-block writes directly rather than requiring RMW:
* a cache line is allocated in the cache upon receipt of a
WriteInvalidateReq, not the WriteInvalidateResp.
* only top-level caches allocate the line; the others just pass
the request along and invalidate as necessary.
* to close a timing window between the *Req and the *Resp, a new
metadata bit tracks whether another cache has read a copy of
the new line before the writeback to memory.
|
|
Previously, they were treated so much like loads that they could stall
at the head of the ROB. Now they are always treated like L1 hits.
If they actually miss, a new request is created at the L1 and tracked
from the MSHRs there if necessary (i.e. if it didn't coalesce with
an existing outstanding load).
|
|
This never actually worked since it was printing out only a word
of the cache block and not the entire thing and doubly didn't work
csprintf overrides the %#x specifier and assumes a char* array is
actually a string.
|
|
This patch adds the basic building blocks required to support e.g. ARM
TrustZone by discerning secure and non-secure memory accesses.
|
|
This patch enables tracking of cache occupancy per thread along with
ages (in buckets) per cache blocks. Cache occupancy stats are
recalculated on each stat dump.
|
|
This patch provides useful printouts throughut the memory system. This
includes pretty-printed cache tags and function call messages
(call-stack like).
|
|
The current implementation in gem5 just keeps a list of locks per cacheline.
Due to this, a store to a non-overlapping portion of the cacheline can cause an
LL/SC pair to fail. This patch simply adds an address range to the lock
structure, so that the lock is only invalidated if the store overlaps the lock
range.
|
|
This patch adds support for the following optional drain methods in
the classical memory system's cache model:
memWriteback() - Write back all dirty cache lines to memory using
functional accesses.
memInvalidate() - Invalidate all cache lines. Dirty cache lines
are lost unless a writeback is requested.
Since memWriteback() is called when checkpointing systems, this patch
adds support for checkpointing systems with caches. The serialization
code now checks whether there are any dirty lines in the cache. If
there are dirty lines in the cache, the checkpoint is flagged as bad
and a warning is printed.
|
|
This seperates the functionality to clear the state in a block into
blk.hh and the functionality to udpate the tag information into the
tags. This gets rid of the case where calling invalidateBlk on an
already-invalid block does something different than calling it on a
valid block, which was confusing.
|
|
This patch fixes the cache stats to use the new request ids.
Cache stats also display the requestor names in the vector subnames.
Most cache stats now include "nozero" and "nonan" flags to reduce the
amount of excessive cache stat dump. Also, simplified
incMissCount()/incHitCount() functions.
|
|
|
|
really needed.
|
|
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
|
|
On the config end, if a shared L2 is created for the system, it is
parameterized to have n sharers as defined by option.num_cpus. In addition to
making the cache sharing aware so that discriminating tag policies can make use
of context_ids to make decisions, I added an occupancy AverageStat and an occ %
stat to each cache so that you could know which contexts are occupying how much
cache on average, both in terms of blocks and percentage. Note that since
devices have context_id -1, having an array of occ stats that correspond to
each context_id will break here, so in FS mode I add an extra bucket for device
blocks. This bucket is explicitly not added in SE mode in order to not only
avoid ugliness in the stats.txt file, but to avoid broken stats (some formulas
break when a bucket is 0).
|
|
|
|
|
|
|
|
|
|
Apparently we broke it with the cache rewrite and never noticed.
Thanks to Bao Yungang <baoyungang@gmail.com> for a significant part
of these changes (and for inspiring me to work on the rest).
Some other overdue cleanup on the prefetch code too.
|
|
the primary identifier for a hardware context should be contextId(). The
concept of threads within a CPU remains, in the form of threadId() because
sometimes you need to know which context within a cpu to manipulate.
|
|
should configure their editors to not insert tabs
|
|
--HG--
extra : convert_revision : 37009b8ee536807073b5a5ca07ed1d097a496aea
|
|
--HG--
rename : src/mem/cache/base_cache.cc => src/mem/cache/base.cc
rename : src/mem/cache/base_cache.hh => src/mem/cache/base.hh
rename : src/mem/cache/cache_blk.cc => src/mem/cache/blk.cc
rename : src/mem/cache/cache_blk.hh => src/mem/cache/blk.hh
rename : src/mem/cache/cache_builder.cc => src/mem/cache/builder.cc
rename : src/mem/cache/miss/mshr.cc => src/mem/cache/mshr.cc
rename : src/mem/cache/miss/mshr.hh => src/mem/cache/mshr.hh
rename : src/mem/cache/miss/mshr_queue.cc => src/mem/cache/mshr_queue.cc
rename : src/mem/cache/miss/mshr_queue.hh => src/mem/cache/mshr_queue.hh
rename : src/mem/cache/prefetch/base_prefetcher.cc => src/mem/cache/prefetch/base.cc
rename : src/mem/cache/prefetch/base_prefetcher.hh => src/mem/cache/prefetch/base.hh
rename : src/mem/cache/prefetch/ghb_prefetcher.cc => src/mem/cache/prefetch/ghb.cc
rename : src/mem/cache/prefetch/ghb_prefetcher.hh => src/mem/cache/prefetch/ghb.hh
rename : src/mem/cache/prefetch/stride_prefetcher.cc => src/mem/cache/prefetch/stride.cc
rename : src/mem/cache/prefetch/stride_prefetcher.hh => src/mem/cache/prefetch/stride.hh
rename : src/mem/cache/prefetch/tagged_prefetcher.cc => src/mem/cache/prefetch/tagged.cc
rename : src/mem/cache/prefetch/tagged_prefetcher.hh => src/mem/cache/prefetch/tagged.hh
rename : src/mem/cache/tags/base_tags.cc => src/mem/cache/tags/base.cc
rename : src/mem/cache/tags/base_tags.hh => src/mem/cache/tags/base.hh
rename : src/mem/cache/tags/Repl.py => src/mem/cache/tags/iic_repl/Repl.py
rename : src/mem/cache/tags/repl/gen.cc => src/mem/cache/tags/iic_repl/gen.cc
rename : src/mem/cache/tags/repl/gen.hh => src/mem/cache/tags/iic_repl/gen.hh
rename : src/mem/cache/tags/repl/repl.hh => src/mem/cache/tags/iic_repl/repl.hh
extra : convert_revision : ff7a35cc155a8d80317563c45cebe405984eac62
|