Age | Commit message (Collapse) | Author |
|
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
|
|
This patch aligns all MSHR queue entries to block boundaries to
simplify checks for matches. Previously there were corner cases that
could lead to existing entries not being identified as matches.
There are, rather alarmingly, a few regressions that change with this
patch.
|
|
This patch adds a bit of clarification around the assumptions made in
the cache when packets are sent out, and dirty responses are
pending. As part of the change, the marking of an MSHR as in service
is simplified slightly, and comments are added to explain what
assumptions are made.
|
|
Adds a new parameter that reserves some number of MSHR entries for demand
accesses. This helps prevent prefetchers from taking all MSHRs, forcing demand
requests from the CPU to stall.
|
|
This patch squashes prefetch requests from downstream caches,
so that they do not steal cachelines away from caches closer
to the cpu. It was originally coded by Mitch Hayenga and
modified by Aasheesh Kolli.
|
|
This patch adds the basic building blocks required to support e.g. ARM
TrustZone by discerning secure and non-secure memory accesses.
|
|
This patch does some minor tidying up of the MSHR and MSHRQueue. The
clean up started as part of some ad-hoc tracing and debugging, but
seems worthwhile enough to go in as a separate patch.
The highlights of the changes are reduced scoping (private) members
where possible, avoiding redundant new/delete, and constructor
initialisation to please static code analyzers.
|
|
This patch adds support for the following optional drain methods in
the classical memory system's cache model:
memWriteback() - Write back all dirty cache lines to memory using
functional accesses.
memInvalidate() - Invalidate all cache lines. Dirty cache lines
are lost unless a writeback is requested.
Since memWriteback() is called when checkpointing systems, this patch
adds support for checkpointing systems with caches. The serialization
code now checks whether there are any dirty lines in the cache. If
there are dirty lines in the cache, the checkpoint is flagged as bad
and a warning is printed.
|
|
|
|
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
|
|
Allow lower-level caches (e.g., L2 or L3) to pass exclusive
copies to higher levels (e.g., L1). This eliminates a lot
of unnecessary upgrade transactions on read-write sequences
to non-shared data.
Also some cleanup of MSHR coherence handling and multiple
bug fixes.
|
|
--HG--
extra : convert_revision : b5008115dc5b34958246608757e69a3fa43b85c5
|
|
--HG--
rename : src/mem/cache/base_cache.cc => src/mem/cache/base.cc
rename : src/mem/cache/base_cache.hh => src/mem/cache/base.hh
rename : src/mem/cache/cache_blk.cc => src/mem/cache/blk.cc
rename : src/mem/cache/cache_blk.hh => src/mem/cache/blk.hh
rename : src/mem/cache/cache_builder.cc => src/mem/cache/builder.cc
rename : src/mem/cache/miss/mshr.cc => src/mem/cache/mshr.cc
rename : src/mem/cache/miss/mshr.hh => src/mem/cache/mshr.hh
rename : src/mem/cache/miss/mshr_queue.cc => src/mem/cache/mshr_queue.cc
rename : src/mem/cache/miss/mshr_queue.hh => src/mem/cache/mshr_queue.hh
rename : src/mem/cache/prefetch/base_prefetcher.cc => src/mem/cache/prefetch/base.cc
rename : src/mem/cache/prefetch/base_prefetcher.hh => src/mem/cache/prefetch/base.hh
rename : src/mem/cache/prefetch/ghb_prefetcher.cc => src/mem/cache/prefetch/ghb.cc
rename : src/mem/cache/prefetch/ghb_prefetcher.hh => src/mem/cache/prefetch/ghb.hh
rename : src/mem/cache/prefetch/stride_prefetcher.cc => src/mem/cache/prefetch/stride.cc
rename : src/mem/cache/prefetch/stride_prefetcher.hh => src/mem/cache/prefetch/stride.hh
rename : src/mem/cache/prefetch/tagged_prefetcher.cc => src/mem/cache/prefetch/tagged.cc
rename : src/mem/cache/prefetch/tagged_prefetcher.hh => src/mem/cache/prefetch/tagged.hh
rename : src/mem/cache/tags/base_tags.cc => src/mem/cache/tags/base.cc
rename : src/mem/cache/tags/base_tags.hh => src/mem/cache/tags/base.hh
rename : src/mem/cache/tags/Repl.py => src/mem/cache/tags/iic_repl/Repl.py
rename : src/mem/cache/tags/repl/gen.cc => src/mem/cache/tags/iic_repl/gen.cc
rename : src/mem/cache/tags/repl/gen.hh => src/mem/cache/tags/iic_repl/gen.hh
rename : src/mem/cache/tags/repl/repl.hh => src/mem/cache/tags/iic_repl/repl.hh
extra : convert_revision : ff7a35cc155a8d80317563c45cebe405984eac62
|