Age | Commit message (Collapse) | Author |
|
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
|
|
The stride prefetcher had a hardcoded number of contexts (i.e. master-IDs)
that it could handle. Since master IDs need to be unique per system, and
every core, cache etc. requires a separate master port, a static limit on
these does not make much sense.
Instead, this patch adds a small hash map that will map all master IDs to
the right prefetch state and dynamically allocates new state for new master
IDs.
|
|
Re-organizes the prefetcher class structure. Previously the
BasePrefetcher forced multiple assumptions on the prefetchers that
inherited from it. This patch makes the BasePrefetcher class truly
representative of base functionality. For example, the base class no
longer enforces FIFO order. Instead, prefetchers with FIFO requests
(like the existing stride and tagged prefetchers) now inherit from a
new QueuedPrefetcher base class.
Finally, the stride-based prefetcher now assumes a custimizable lookup table
(sets/ways) rather than the previous fully associative structure.
|
|
Forces the prefetcher to mispredict twice in a row before resetting the
confidence of prefetching. This helps cases where a load PC strides by a
constant factor, however it may operate on different arrays at times.
Avoids the cost of retraining. Primarily helps with small iteration loops.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
For systems with a tightly coupled L2, a stride-based prefetcher may observe
access requests from both instruction and data L1 caches. However, the PC
address of an instruction miss gives no relevant training information to the
stride based prefetcher(there is no stride to train). In theses cases, its
better if the L2 stride prefetcher simply reverted back to a simple N-block
ahead prefetcher. This patch enables this option.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch adds the basic building blocks required to support e.g. ARM
TrustZone by discerning secure and non-secure memory accesses.
|
|
This patch changes the cache-related latencies from an absolute time
expressed in Ticks, to a number of cycles that can be scaled with the
clock period of the caches. Ultimately this patch serves to enable
future work that involves dynamic frequency scaling. As an immediate
benefit it also makes it more convenient to specify cache performance
without implicitly assuming a specific CPU core operating frequency.
The stat blocked_cycles that actually counter in ticks is now updated
to count in cycles.
As the timing is now rounded to the clock edges of the cache, there
are some regressions that change. Plenty of them have very minor
changes, whereas some regressions with a short run-time are perturbed
quite significantly. A follow-on patch updates all the statistics for
the regressions.
|
|
cache
|
|
|
|
Apparently we broke it with the cache rewrite and never noticed.
Thanks to Bao Yungang <baoyungang@gmail.com> for a significant part
of these changes (and for inspiring me to work on the rest).
Some other overdue cleanup on the prefetch code too.
|
|
the primary identifier for a hardware context should be contextId(). The
concept of threads within a CPU remains, in the form of threadId() because
sometimes you need to know which context within a cpu to manipulate.
|
|
should configure their editors to not insert tabs
|
|
--HG--
extra : convert_revision : b5008115dc5b34958246608757e69a3fa43b85c5
|
|
--HG--
rename : src/mem/cache/base_cache.cc => src/mem/cache/base.cc
rename : src/mem/cache/base_cache.hh => src/mem/cache/base.hh
rename : src/mem/cache/cache_blk.cc => src/mem/cache/blk.cc
rename : src/mem/cache/cache_blk.hh => src/mem/cache/blk.hh
rename : src/mem/cache/cache_builder.cc => src/mem/cache/builder.cc
rename : src/mem/cache/miss/mshr.cc => src/mem/cache/mshr.cc
rename : src/mem/cache/miss/mshr.hh => src/mem/cache/mshr.hh
rename : src/mem/cache/miss/mshr_queue.cc => src/mem/cache/mshr_queue.cc
rename : src/mem/cache/miss/mshr_queue.hh => src/mem/cache/mshr_queue.hh
rename : src/mem/cache/prefetch/base_prefetcher.cc => src/mem/cache/prefetch/base.cc
rename : src/mem/cache/prefetch/base_prefetcher.hh => src/mem/cache/prefetch/base.hh
rename : src/mem/cache/prefetch/ghb_prefetcher.cc => src/mem/cache/prefetch/ghb.cc
rename : src/mem/cache/prefetch/ghb_prefetcher.hh => src/mem/cache/prefetch/ghb.hh
rename : src/mem/cache/prefetch/stride_prefetcher.cc => src/mem/cache/prefetch/stride.cc
rename : src/mem/cache/prefetch/stride_prefetcher.hh => src/mem/cache/prefetch/stride.hh
rename : src/mem/cache/prefetch/tagged_prefetcher.cc => src/mem/cache/prefetch/tagged.cc
rename : src/mem/cache/prefetch/tagged_prefetcher.hh => src/mem/cache/prefetch/tagged.hh
rename : src/mem/cache/tags/base_tags.cc => src/mem/cache/tags/base.cc
rename : src/mem/cache/tags/base_tags.hh => src/mem/cache/tags/base.hh
rename : src/mem/cache/tags/Repl.py => src/mem/cache/tags/iic_repl/Repl.py
rename : src/mem/cache/tags/repl/gen.cc => src/mem/cache/tags/iic_repl/gen.cc
rename : src/mem/cache/tags/repl/gen.hh => src/mem/cache/tags/iic_repl/gen.hh
rename : src/mem/cache/tags/repl/repl.hh => src/mem/cache/tags/iic_repl/repl.hh
extra : convert_revision : ff7a35cc155a8d80317563c45cebe405984eac62
|