Age | Commit message (Collapse) | Author |
|
Packet::checkFunctional also wrote data to/from the packet depending
on if it was read/write, respectively, which the 'check' in the name
would suggest otherwise. This renames it to doFunctional, which is
more suggestive. It also renames any function called checkFunctional
which calls Packet::checkFunctional. These are
- Bridge::BridgeMasterPort::checkFunctional
- calls Packet::checkFunctional
- MSHR::checkFunctional
- calls Packet::checkFunctional
- MSHR::TargetList::checkFunctional
- calls Packet::checkFunctional
- Queue<>::checkFunctional
(of src/mem/cache/queue.hh, not src/cpu/minor/buffers.h)
- Instantiated with Queue<WriteQueueEntry> and Queue<MSHR>
- WriteQueueEntry
- calls Packet::checkFunctional
- WriteQueueEntry::TargetList
- calls Packet::checkFunctional
- MemDelay::checkFunctional
- calls QueuedSlavePort/QueuedMasterPort::checkFunctional
- Packet::checkFunctional
- PacketQueue::checkFunctional
- calls Packet::checkFunctional
- QueuedSlavePort::checkFunctional
- calls PacketQueue::doFunctional
- QueuedMasterPort::checkFunctional
- calls PacketQueue::doFunctional
- SerialLink::SerialLinkMasterPort::checkFunctional
- calls Packet::doFunctional
Change-Id: Ieca2579c020c329040da053ba8e25820801b62c5
Reviewed-on: https://gem5-review.googlesource.com/11810
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
Previously the xbar used the start address to lookup the port map and
determine the right destination of an incoming packet. This change
uses the full address range to correctly determine the right master.
Change-Id: I5118712c43ae65aba64e71bf030bca5c99770bdd
Reviewed-on: https://gem5-review.googlesource.com/11117
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Use that instead of caching built into the crossbar.
Change-Id: If5a5355a0a1a6e532b14efc88a319de4c023f8c1
Reviewed-on: https://gem5-review.googlesource.com/5243
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
A clean packet request serving a cache maintenance operation (CMO)
visits all memories down to the specified xbar. The visited caches
invalidate their copy (if the CMO is invalidating) and if a dirty copy
is found a write packet writes the dirty data to the memory level
below the specified xbar. A response is send back when all the caches
are clean and/or invalidated and the specified xbar has seen the write
packet.
This patch adds the following functionality in the xbar:
1) Accounts for the cache clean requests that go through the xbar
2) Generates the cache clean response when both the cache clean
request and the corresponding writeclean packet has crossed the
destination xbar.
Previously transactions in the xbar were identified using the pointer
of the original request. Cache clean transactions comprise of two
different packets, the clean request and the writeclean, and therefore
have different request pointers. This patch adds support for custom
transaction IDs that by default take the value of the request pointer
but can be overriden by the contructor. This allows the clean request
and writeclean share the same id which the coherent xbar uses to
co-ordinate them and send the response in a timely manner.
Change-Id: I80db76386a1caded38dc66e6e18f930c3bb800ff
Reviewed-by: Stephan Diestelhorst <stephan.diestelhorst@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5051
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Previously, WriteClean packets would always write to the first memory
below unless the memory was unable to allocate in which case it would
be forwarded further below.
This change adds support for specifying the destination of a
WriteClean packet. The cache annotates the request with the specified
destination and marks the packet as write-through upon its
creation. The coherent xbar checks packets for their destination and
resets the write-through flag when necessary e.g., the coherent xbar
that is set as the PoC will reset the write-through flag for packets
to the PoC.
Change-Id: I84b653f5cb6e46e97e09508649a3725d72d94606
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Anouk Van Laer <anouk.vanlaer@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5046
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
This change adds support for creating and handling WriteClean
packets. The WriteClean operation is almost identical to a
WritebackDirty with the exception that the cache generating a
WriteClean retains a copy of the block.
Change-Id: I63c8de62919fad0f9547d412f8266aa4292ebecd
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Anouk Van Laer <anouk.vanlaer@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5045
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
The point of unification is the first crossbar at which the
instruction cache, the data cache and the translation table walks of
the core are guaranteed to see the same copy of a memory location.
Change-Id: Ica79b34c8ed4f1a8f2379748e8520a8f8afffa90
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Anouk Van Laer <anouk.vanlaer@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5040
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
These files aren't a collection of miscellaneous stuff, they're the
definition of the Logger interface, and a few utility macros for
calling into that interface (panic, warn, etc.).
Change-Id: I84267ac3f45896a83c0ef027f8f19c5e9a5667d1
Reviewed-on: https://gem5-review.googlesource.com/6226
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
When the XBar receives a Writeback/WriteClean packet, it doesn't need
to snoop the upstream caches. It only queries the snoop filter and
sets the blockCached flag accordingly. This is in line with the
recvTimingReq.
Change-Id: I0ae22f21491d75a111019124bb95bac7b16d3cd3
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Anouk Van Laer <anouk.vanlaer@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5043
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
|
|
Previously DPRINTFs printing information about a packet would use ad hoc
formats. This patch changes all DPRINTFs to use the print function
defined by the packet class, making the packet printing format more
uniform and easier to change.
Change-Id: Idd436a9758d4bf70c86a574d524648b2a2580970
Reviewed-by: Andreas Hansson <andreas.hansson@arm.com>
Reviewed-by: Stephan Diestelhorst <stephan.diestelhorst@arm.com>
|
|
Secure and non-secure data can coexist in the cache and therefore the
snoop filter should treat differently packets with secure and non
secure accesses. This patch uses the lower bits of the line address to
keep track of whether the packet is addressing secure memory or not.
Change-Id: I54a5e614dad566a5083582bede86c86896f2c2c1
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Stephan Diestelhorst <stephan.diestelhorst@arm.com>
Reviewed-by: Tony Gutierrez <anthony.gutierrez@amd.com>
|
|
|
|
The snoop filter handles requests in two steps which preceed and
follow the call to send the packet downstream. An address mapper could
possibly change the address of the packet when it is sent downstream
breaking the snoop filter assumption that the address is unchanged
Change-Id: Ib2db755e9ebef4f2f7c0169a46b1b11185ffbe79
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
|
|
This patch introduces the ability of making the coherent crossbar the
point of coherency. If so, the crossbar does not forward packets where
a cache with ownership has already committed to responding, and also
does not forward any coherency-related packets that are not intended
for a downstream memory controller. Thus, invalidations and upgrades
are turned around in the crossbar, and the memory controller only sees
normal reads and writes.
In addition this patch moves the express snoop promotion of a packet
to the crossbar, thus allowing the downstream cache to check the
express snoop flag (as it should) for bypassing any blocking, rather
than relying on whether a cache is responding or not.
|
|
This patch changes the name of a bunch of packet flags and MSHR member
functions and variables to make the coherency protocol easier to
understand. In addition the patch adds and updates lots of
descriptions, explicitly spelling out assumptions.
The following name changes are made:
* the packet memInhibit flag is renamed to cacheResponding
* the packet sharedAsserted flag is renamed to hasSharers
* the packet NeedsExclusive attribute is renamed to NeedsWritable
* the packet isSupplyExclusive is renamed responderHadWritable
* the MSHR pendingDirty is renamed to pendingModified
The cache states, Modified, Owned, Exclusive, Shared are also called
out in the cache and MSHR code to make it easier to understand.
|
|
This patch adds the necessary commands and cache functionality to
allow clean writebacks. This functionality is crucial, especially when
having exclusive (victim) caches. For example, if read-only L1
instruction caches are not sending clean writebacks, there will never
be any spills from the L1 to the L2. At the moment the cache model
defaults to not sending clean writebacks, and this should possibly be
re-evaluated.
The implementation of clean writebacks relies on a new packet command
WritebackClean, which acts much like a Writeback (renamed
WritebackDirty), and also much like a CleanEvict. On eviction of a
clean block the cache either sends a clean evict, or a clean
writeback, and if any copies are still cached upstream the clean
evict/writeback is dropped. Similarly, if a clean evict/writeback
reaches a cache where there are outstanding MSHRs for the block, the
packet is dropped. In the typical case though, the clean writeback
allocates a block in the downstream cache, and marks it writable if
the evicted block was writable.
The patch changes the O3_ARM_v7a L1 cache configuration and the
default L1 caches in config/common/Caches.py
|
|
This patch optimises the handling of writebacks and clean evictions
when using a snoop filter. Instead of snooping into the caches to
determine if the block is cached or not, simply set the status based
on the snoop-filter result.
|
|
This patch unifies how we deal with delayed packet deletion, where the
receiving slave is responsible for deleting the packet, but the
sending agent (e.g. a cache) is still relying on the pointer until the
call to sendTimingReq completes. Previously we used a mix of a
deletion vector and a construct using unique_ptr. With this patch we
ensure all slaves use the latter approach.
|
|
The CoherentXBar currently doesn't check its queued slave ports when
receiving a functional snoop. This caused data corruption in cases
when a modified cache lines is forwarded between two caches.
Add the required functional calls into the queued slave ports.
|
|
This patch changes the tracking of ports in the snoop filter to use
local dense port IDs so that we can have 64 snooping ports (rather
than crossbar slave ports). This is achieved by adding a simple
remapping vector that translates the actal port IDs into the local
slave IDs used in the SnoopMask.
Ultimately this patch allows us to scale to much larger systems
without introducing a hierarchy of crossbars.
|
|
This patch introduces a private member storing the iterator from the
lookupRequest call, such that it can be re-used when the request
eventually finishes. The method previously called updateRequest is
renamed finishRequest to make it more clear that the two functions
must be called together.
|
|
This patch mirrors the logic in timing mode which sends up snoops to
check for cached copies before sending CleanEvicts and Writebacks down
the memory hierarchy. In case there is a copy in a cache above,
discard CleanEvicts and set the BLOCK_CACHED flag in Writebacks so
that writebacks do not reset the cache residency bit in the snoop
filter below.
|
|
This patch adds the functionality to properly track CleanEvicts and
Writebacks in the snoop filter. Previously there were no CleanEvicts, and
Writebacks did not send up snoops to ensure there were no copies in
caches above. Hence a writeback could never erase an entry from the
snoop filter.
When a CleanEvict message reaches a snoop filter, it confirms that the
BLOCK_CACHED flag is not set and resets the bits corresponding to the
CleanEvict address and port it arrived on. If none of the other peer
caches have (or have requested) the block, the snoop filter forwards
the CleanEvict to lower levels of memory. In case of a Writeback
message, the snoop filter checks if the BLOCK_CACHED flag is not set
and only then resets the bits corresponding to the Writeback
address. If any of the other peer caches have (or has requested) the
same block, the snoop filter sets the BLOCK_CACHED flag in the
Writeback before forwarding it to lower levels of memory heirarachy.
|
|
This patch introduces the concept of a snoop latency. Given the
requirement to snoop and forward packets in zero time (due to the
coherency mechanism), the latency is accounted for later.
On a snoop, we establish the latency, and later add it to the header
delay of the packet. To allow multiple caches to contribute to the
snoop latency, we use a separate variable in the packet, and then take
the maximum before adding it to the header delay.
|
|
This patch ensures that the snoop-filter latency only contributes to
the packet latency, and not to the crossbar throughput/occupancy. In
essence we treat the snoop-filter lookup as pipelined.
|
|
Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.
This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.
While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.
A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.
|
|
This patch changes how the crossbar classes deal with
responses. Instead of forwarding responses directly and burdening the
neighbouring modules in paying for the latency (through the
pkt->headerDelay), we now queue them before sending them.
The coherency protocol is not affected as requests and any snoop
requests/responses are still passed on in zero time. Thus, the
responses end up paying for any header delay accumulated when passing
through the crossbar. Any latency incurred on the request path will be
paid for on the response side, if no other module has dealt with it.
As a result of this patch, responses are returned at a later
point. This affects the number of outstanding transactions, and quite
a few regressions see an impact in blocking due to no MSHRs, increased
cache-miss latencies, etc.
Going forward we should be able to use the same concept also for snoop
responses, and any request that is not an express snoop.
|
|
This patch adds eviction notices to the caches, to provide accurate
tracking of cache blocks in snoop filters. We add the CleanEvict
message to the memory heirarchy and use both CleanEvicts and
Writebacks with BLOCK_CACHED flags to propagate notice of clean and
dirty evictions respectively, down the memory hierarchy. Note that the
BLOCK_CACHED flag indicates whether there exist any copies of the
evicted block in the caches above the evicting cache.
The purpose of the CleanEvict message is to notify snoop filters of
silent evictions in the relevant caches. The CleanEvict message
behaves much like a Writeback. CleanEvict is a write and a request but
unlike a Writeback, CleanEvict does not have data and does not need
exclusive access to the block. The cache generates the CleanEvict
message on a fill resulting in eviction of a clean block. Before
travelling downwards CleanEvict requests generate zero-time snoop
requests to check if the same block is cached in upper levels of the
memory heirarchy. If the block exists, the cache discards the
CleanEvict message. The snoops check the tags, writeback queue and the
MSHRs of upper level caches in a manner similar to snoops generated
from HardPFReqs. Currently CleanEvicts keep travelling towards main
memory unless they encounter the block corresponding to their address
or reach main memory (since we have no well defined point of
serialisation). Main memory simply discards CleanEvict messages.
We have modified the behavior of Writebacks, such that they generate
snoops to check for the presence of blocks in upper level caches. It
is possible in our current implmentation for a lower level cache to be
writing back a block while a shared copy of the same block exists in
the upper level cache. If the snoops find the same block in upper
level caches, we set the BLOCK_CACHED flag in the Writeback message.
We have also added logic to account for interaction of other message
types with CleanEvicts waiting in the writeback queue. A simple
example is of a response arriving at a cache removing any CleanEvicts
to the same address from the cache's writeback queue.
|
|
This patch takes a last step in fixing issues related to uncacheable
accesses. We do not separate uncacheable memory from uncacheable
devices, and in cases where it is really memory, there are valid
scenarios where we need to snoop since we do not support cache
maintenance instructions (yet). On snooping an uncacheable access we
thus provide data if possible. In essence this makes uncacheable
accesses IO coherent.
The snoop filter is also queried to steer the snoops, but not updated
since the uncacheable accesses do not allocate a block.
|
|
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
|
|
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.
The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.
The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
|
|
This patch clarifies the packet timings annotated
when going through a crossbar.
The old 'firstWordDelay' is replaced by 'headerDelay' that represents
the delay associated to the delivery of the header of the packet.
The old 'lastWordDelay' is replaced by 'payloadDelay' that represents
the delay needed to processing the payload of the packet.
For now the uses and values remain identical. However, going forward
the payloadDelay will be additive, and not include the
headerDelay. Follow-on patches will make the headerDelay capture the
pipeline latency incurred in the crossbar, whereas the payloadDelay
will capture the additional serialisation delay.
|
|
This patch removes the need for a source and destination field in the
packet by shifting the onus of the tracking to the crossbar, much like
a real implementation. This change in behaviour also means we no
longer need a SenderState to remember the source/dest when ever we
have multiple crossbars in the system. Thus, the stack that was
created by the SenderState is not needed, and each crossbar locally
tracks the response routing.
The fields in the packet are still left behind as the RubyPort (which
also acts as a crossbar) does routing based on them. In the succeeding
patches the uses of the src and dest field will be removed. Combined,
these patches improve the simulation performance by roughly 2%.
|
|
This patch allows objects to get the src/dest of a packet even if it
is not set to a valid port id. This simplifies (ab)using the bridge as
a buffer and latency adapter in situations where the neighbouring
MemObjects are not crossbars.
The checks that were done in the packet are now shifted to the
crossbar where the fields are used to index into the port
arrays. Thus, the carrier of the information is not burdened with
checking, and the crossbar can check not only that the destination is
set, but also that the port index is within limits.
|
|
This patch changes the name of the Bus classes to XBar to better
reflect the actual timing behaviour. The actual instances in the
config scripts are not renamed, and remain as e.g. iobus or membus.
As part of this renaming, the code has also been clean up slightly,
making use of range-based for loops and tidying up some comments. The
only changes outside the bus/crossbar code is due to the delay
variables in the packet.
--HG--
rename : src/mem/Bus.py => src/mem/XBar.py
rename : src/mem/coherent_bus.cc => src/mem/coherent_xbar.cc
rename : src/mem/coherent_bus.hh => src/mem/coherent_xbar.hh
rename : src/mem/noncoherent_bus.cc => src/mem/noncoherent_xbar.cc
rename : src/mem/noncoherent_bus.hh => src/mem/noncoherent_xbar.hh
rename : src/mem/bus.cc => src/mem/xbar.cc
rename : src/mem/bus.hh => src/mem/xbar.hh
|