summaryrefslogtreecommitdiff
path: root/src/mem/dramsim2.cc
AgeCommit message (Collapse)Author
2016-11-09style: [patch 1/22] use /r/3648/ to reorganize includesBrandon Potter
2015-12-31mem: Make cache terminology easier to understandAndreas Hansson
This patch changes the name of a bunch of packet flags and MSHR member functions and variables to make the coherency protocol easier to understand. In addition the patch adds and updates lots of descriptions, explicitly spelling out assumptions. The following name changes are made: * the packet memInhibit flag is renamed to cacheResponding * the packet sharedAsserted flag is renamed to hasSharers * the packet NeedsExclusive attribute is renamed to NeedsWritable * the packet isSupplyExclusive is renamed responderHadWritable * the MSHR pendingDirty is renamed to pendingModified The cache states, Modified, Owned, Exclusive, Shared are also called out in the cache and MSHR code to make it easier to understand.
2015-11-06mem: Align rules for sinking inhibited packets at the slaveAndreas Hansson
This patch aligns how the memory-system slaves, i.e. the various memory controllers and the bridge, identify and deal with sinking of inhibited packets that are only useful within the coherent part of the memory system. In the future we could shift the onus to the crossbar, and add a parameter "is_point_of_coherence" that would allow it to sink the aforementioned packets.
2015-11-06mem: Unify delayed packet deletionAndreas Hansson
This patch unifies how we deal with delayed packet deletion, where the receiving slave is responsible for deleting the packet, but the sending agent (e.g. a cache) is still relying on the pointer until the call to sendTimingReq completes. Previously we used a mix of a deletion vector and a construct using unique_ptr. With this patch we ensure all slaves use the latter approach.
2015-07-13mem: Updated DRAMSim2 wrapper to new drain APIAndreas Hansson
Somehow this one slipped through without being updated.
2015-07-07sim: Refactor and simplify the drain APIAndreas Sandberg
The drain() call currently passes around a DrainManager pointer, which is now completely pointless since there is only ever one global DrainManager in the system. It also contains vestiges from the time when SimObjects had to keep track of their child objects that needed draining. This changeset moves all of the DrainState handling to the Drainable base class and changes the drain() and drainResume() calls to reflect this. Particularly, the drain() call has been updated to take no parameters (the DrainManager argument isn't needed) and return a DrainState instead of an unsigned integer (there is no point returning anything other than 0 or 1 any more). Drainable objects should return either DrainState::Draining (equivalent to returning 1 in the old system) if they need more time to drain or DrainState::Drained (equivalent to returning 0 in the old system) if they are already in a consistent state. Returning DrainState::Running is considered an error. Drain done signalling is now done through the signalDrainDone() method in the Drainable class instead of using the DrainManager directly. The new call checks if the state of the object is DrainState::Draining before notifying the drain manager. This means that it is safe to call signalDrainDone() without first checking if the simulator has requested draining. The intention here is to reduce the code needed to implement draining in simple objects.
2015-07-07sim: Make the drain state a global typed enumAndreas Sandberg
The drain state enum is currently a part of the Drainable interface. The same state machine will be used by the DrainManager to identify the global state of the simulator. Make the drain state a global typed enum to better cater for this usage scenario.
2015-03-02mem: Downstream components consumes new crossbar delaysMarco Balboni
This patch makes the caches and memory controllers consume the delay that is annotated to a packet by the crossbar. Previously many components simply threw these delays away. Note that the devices still do not pay for these delays.
2015-03-02mem: Split port retry for all different packet classesAndreas Hansson
This patch fixes a long-standing isue with the port flow control. Before this patch the retry mechanism was shared between all different packet classes. As a result, a snoop response could get stuck behind a request waiting for a retry, even if the send/recv functions were split. This caused message-dependent deadlocks in stress-test scenarios. The patch splits the retry into one per packet (message) class. Thus, sendTimingReq has a corresponding recvReqRetry, sendTimingResp has recvRespRetry etc. Most of the changes to the code involve simply clarifying what type of request a specific object was accepting. The biggest change in functionality is in the cache downstream packet queue, facing the memory. This queue was shared by requests and snoop responses, and it is now split into two queues, each with their own flow control, but the same physical MasterPort. These changes fixes the previously seen deadlocks.
2015-02-11mem: Clarification of packet crossbar timingsMarco Balboni
This patch clarifies the packet timings annotated when going through a crossbar. The old 'firstWordDelay' is replaced by 'headerDelay' that represents the delay associated to the delivery of the header of the packet. The old 'lastWordDelay' is replaced by 'payloadDelay' that represents the delay needed to processing the payload of the packet. For now the uses and values remain identical. However, going forward the payloadDelay will be additive, and not include the headerDelay. Follow-on patches will make the headerDelay capture the pipeline latency incurred in the crossbar, whereas the payloadDelay will capture the additional serialisation delay.
2014-10-16mem: Dynamically determine page bytes in memory componentsAndreas Hansson
This patch takes a step towards an ISA-agnostic memory system by enabling the components to establish the page size after instantiation. The swap operation in the memory is now also allowing any granularity to avoid depending on the IntReg of the ISA.
2014-09-20mem: Rename Bus to XBar to better reflect its behaviourAndreas Hansson
This patch changes the name of the Bus classes to XBar to better reflect the actual timing behaviour. The actual instances in the config scripts are not renamed, and remain as e.g. iobus or membus. As part of this renaming, the code has also been clean up slightly, making use of range-based for loops and tidying up some comments. The only changes outside the bus/crossbar code is due to the delay variables in the packet. --HG-- rename : src/mem/Bus.py => src/mem/XBar.py rename : src/mem/coherent_bus.cc => src/mem/coherent_xbar.cc rename : src/mem/coherent_bus.hh => src/mem/coherent_xbar.hh rename : src/mem/noncoherent_bus.cc => src/mem/noncoherent_xbar.cc rename : src/mem/noncoherent_bus.hh => src/mem/noncoherent_xbar.hh rename : src/mem/bus.cc => src/mem/xbar.cc rename : src/mem/bus.hh => src/mem/xbar.hh
2014-08-26mem: Fix DRAMSim2 cycle check when restoring from checkpointAndreas Hansson
This patch ensures the cycle check is still valid even restoring from a checkpoint. In this case the DRAMSim2 cycle count is relative to the startTick rather than 0.
2014-02-18mem: Add a wrapped DRAMSim2 memory controllerAndreas Hansson
This patch adds DRAMSim2 as a memory controller by wrapping the external library and creating a sublass of AbstractMemory that bridges between the semantics of gem5 and the DRAMSim2 interface. The DRAMSim2 wrapper extracts the clock period from the config file. There is no way of extracting this information from DRAMSim2 itself, so we simply read the same config file and get it from there. To properly model the response queue, the wrapper keeps track of how many transactions are in the actual controller, and how many are stacking up waiting to be sent back as responses (in the wrapper). The latter requires us to move away from the queued port and manage the packets ourselves. This is due to DRAMSim2 not having any flow control on the response path. DRAMSim2 assumes that the transactions it is given are matching the burst size of the choosen memory. The wrapper checks to ensure the cache line size of the system matches the burst size of DRAMSim2 as there are currently no provisions to split the system requests. In theory we could allow a cache line size smaller than the burst size, but that would lead to inefficient use of the DRAM, so for not we fatal also in this case.